HEAL DSpace

Inverse scattering for an acoustically soft scatterer in the low-frequency region

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalambopoulos, A en
dc.date.accessioned 2014-03-01T01:11:09Z
dc.date.available 2014-03-01T01:11:09Z
dc.date.issued 1995 en
dc.identifier.issn 0020-7225 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11562
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0029264355&partnerID=40&md5=b64f8b3271fc61aa35f76748c445bf59 en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.other Acoustic wave propagation en
dc.subject.other Approximation theory en
dc.subject.other Image reconstruction en
dc.subject.other Inverse problems en
dc.subject.other Polynomials en
dc.subject.other Surfaces en
dc.subject.other Acoustically soft scatterer en
dc.subject.other Cartesian coordinates en
dc.subject.other Inverse scattering en
dc.subject.other Low frequency region en
dc.subject.other Tikhonov regularization en
dc.subject.other Time harmonic acoustic wave en
dc.subject.other Acoustic wave scattering en
dc.title Inverse scattering for an acoustically soft scatterer in the low-frequency region en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract In this work, a new method is presented for the determination of the shape of a scatterer in R3 when it is a priori known that a scatterer's surface can be represented as a power series of Cartesian coordinates. The necessary data for the application of the method are provided by the knowledge of the scattering amplitude as an analytic function of the wave number k in the low-frequency region. © 1995. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Engineering Science en
dc.identifier.isi ISI:A1995QD34700011 en
dc.identifier.volume 33 en
dc.identifier.issue 4 en
dc.identifier.spage 599 en
dc.identifier.epage 609 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής