HEAL DSpace

Low-frequency oscillations of a partially submerged cylinder of arbitrary shape

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Kaklis, PD en
dc.contributor.author Politis, CG en
dc.date.accessioned 2014-03-01T01:11:10Z
dc.date.available 2014-03-01T01:11:10Z
dc.date.issued 1995 en
dc.identifier.issn 0022-4502 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11570
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0029324012&partnerID=40&md5=1be8c8fa0f0d385e5b7c2a32a9fcd468 en
dc.subject.classification Engineering, Marine en
dc.subject.classification Engineering, Civil en
dc.subject.other Cylinders (shapes) en
dc.subject.other Numerical analysis en
dc.subject.other Oscillations en
dc.subject.other Perturbation techniques en
dc.subject.other Problem solving en
dc.subject.other Surfaces en
dc.subject.other Tensors en
dc.subject.other Waves en
dc.subject.other Asymptotic solutions en
dc.subject.other Floating cylinder en
dc.subject.other Low frequency oscillations en
dc.subject.other Partially submerged cylinder en
dc.subject.other Ships en
dc.title Low-frequency oscillations of a partially submerged cylinder of arbitrary shape en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract This paper is concerned with the low-frequency asymptotic solution of the deep-water radiation problem for a partially submerged cylinder of arbitrary (nonsymmetric, non-smooth) shape. A five-term asymptotic expansion of the wave potential is derived which reduces to a three-term expansion when the mean volume flux across the wetted surface of the cylinder vanishes. The former case corresponds to the heaving motion and the latter one to the swaying or rolling motions of a floating cylinder. This expansion is then used to obtain explicit low-frequency asymptotic expansions for all elements of the added-mass and damping tensors, as well as the amplitude and the phase angle of the outgoing waves at infinity. Most of the terms in these expansions are given in terms of simple geometric characteristics (beam, area, and centroid's position) of the immersed part of the cylinder, as well as the formal-limit (omega = 0) added mass. Numerical comparison between the asymptotic results and the ''exact'' ones, obtained by solving numerically the frequency-dependent problem, show that the agreement is satisfactory in the range 0 < omega < 0.5 and, in some cases (e.g., for lateral motions), in 0 < omega < 0.6, where omega is the nondimensional frequency normalized by the beam of the cylinder. (Note that the whole range of interest, up to the high-frequency limit, is about 0 < omega < 2.0.) en
heal.publisher Soc of Naval Architects & Marine Engineers, Jersey City, NJ, United States en
heal.journalName Journal of Ship Research en
dc.identifier.isi ISI:A1995RC29200004 en
dc.identifier.volume 39 en
dc.identifier.issue 2 en
dc.identifier.spage 123 en
dc.identifier.epage 138 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής