dc.contributor.author |
FRANTZESKAKIS, DJ |
en |
dc.contributor.author |
HIZANIDIS, K |
en |
dc.contributor.author |
TOMBRAS, GS |
en |
dc.contributor.author |
BELIA, I |
en |
dc.date.accessioned |
2014-03-01T01:11:18Z |
|
dc.date.available |
2014-03-01T01:11:18Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0018-9197 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11593 |
|
dc.subject |
Hamiltonian Dynamics |
en |
dc.subject |
Initial Condition |
en |
dc.subject |
Nonlinear Dynamics |
en |
dc.subject |
nonlinear schrodinger equation |
en |
dc.subject |
Optical Fiber |
en |
dc.subject |
Ordinary Differential Equation |
en |
dc.subject |
Solitary Wave |
en |
dc.subject |
Peak Power |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
SCHRODINGER-EQUATION |
en |
dc.subject.other |
PULSE-PROPAGATION |
en |
dc.subject.other |
ANOMALOUS DISPERSION |
en |
dc.subject.other |
DIELECTRIC FIBERS |
en |
dc.subject.other |
SOLITONS |
en |
dc.subject.other |
WAVELENGTH |
en |
dc.subject.other |
TRANSMISSION |
en |
dc.subject.other |
GUIDE |
en |
dc.subject.other |
MODULATION |
en |
dc.subject.other |
AMPLIFIERS |
en |
dc.title |
NONLINEAR DYNAMICS OF FEMTOSECOND OPTICAL SOLITARY WAVE-PROPAGATION AT THE ZERO DISPERSION POINT |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/3.341724 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/3.341724 |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
A perturbed nonlinear Schrodinger equation, describing nonlinear pulse propagation of femtosecond duration in optical fibers at the zero dispersion point, is considered. This equation is reduced to an ordinary differential equation, which is treated by means of Hamiltonian dynamics techniques. Conditions for solitary wave formation, as well as the solutions themselves, namely, a bright soliton, a rarefaction soliton, and a pair of dark solitons, are derived analytically. The shifts of the solitary wave velocity, the angular frequency, and the wavenumber, as well as the peak power required to launch a bright soliton are also obtained. The connection among the point initial conditions of the pulse and the type of solitary wave that can be excited is finally presented. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE JOURNAL OF QUANTUM ELECTRONICS |
en |
dc.identifier.doi |
10.1109/3.341724 |
en |
dc.identifier.isi |
ISI:A1995QE58800024 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
183 |
en |
dc.identifier.epage |
189 |
en |