dc.contributor.author |
Chaviaropoulos, P |
en |
dc.contributor.author |
Dedoussis, V |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T01:11:18Z |
|
dc.date.available |
2014-03-01T01:11:18Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
00221120 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11600 |
|
dc.subject.other |
Aspect ratio |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Curvature tensor |
en |
dc.subject.other |
Frenet equations |
en |
dc.subject.other |
Streamtube cross section |
en |
dc.subject.other |
Three dimensional inverse potential target pressure problem |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computational Fluid Dynamics |
en |
dc.subject.other |
Target Pressure |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Ducts |
en |
dc.subject.other |
Computational Fluid |
en |
dc.subject.other |
Dynamics |
en |
dc.title |
On the 3-D inverse potential target pressure problem. Part 1. Theoretical aspects and method formulation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0022112095000061 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0022112095000061 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
An inverse potential method is introduced to solve the fully 3-D target pressure problem. The method is based on a potential function/stream function formulation, where the physical space is mapped onto a computational one via a body-fitted coordinate transformation. A novel procedure based on differential geometry and generalized tensor analysis is used to formulate the method. The governing differential equations are derived by requiring the curvature tensor of the flat 3-D physical Eucledian space to be zero. The resulting equations are discussed and investigated with particular emphasis on the existence and uniqueness of their solution. |
en |
heal.publisher |
Cambridge Univ Press, New York, NY, United States |
en |
heal.journalName |
Journal of Fluid Mechanics |
en |
dc.identifier.doi |
10.1017/S0022112095000061 |
en |
dc.identifier.volume |
282 |
en |
dc.identifier.spage |
131 |
en |
dc.identifier.epage |
146 |
en |