HEAL DSpace

On the 3-D inverse potential target pressure problem. Part 1. Theoretical aspects and method formulation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chaviaropoulos, P en
dc.contributor.author Dedoussis, V en
dc.contributor.author Papailiou, KD en
dc.date.accessioned 2014-03-01T01:11:18Z
dc.date.available 2014-03-01T01:11:18Z
dc.date.issued 1995 en
dc.identifier.issn 00221120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11600
dc.subject.other Aspect ratio en
dc.subject.other Boundary conditions en
dc.subject.other Equations of motion en
dc.subject.other Inverse problems en
dc.subject.other Mathematical transformations en
dc.subject.other Partial differential equations en
dc.subject.other Three dimensional en
dc.subject.other Vectors en
dc.subject.other Curvature tensor en
dc.subject.other Frenet equations en
dc.subject.other Streamtube cross section en
dc.subject.other Three dimensional inverse potential target pressure problem en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computational Fluid Dynamics en
dc.subject.other Target Pressure en
dc.subject.other Thermodynamics en
dc.subject.other Ducts en
dc.subject.other Computational Fluid en
dc.subject.other Dynamics en
dc.title On the 3-D inverse potential target pressure problem. Part 1. Theoretical aspects and method formulation en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0022112095000061 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0022112095000061 en
heal.publicationDate 1995 en
heal.abstract An inverse potential method is introduced to solve the fully 3-D target pressure problem. The method is based on a potential function/stream function formulation, where the physical space is mapped onto a computational one via a body-fitted coordinate transformation. A novel procedure based on differential geometry and generalized tensor analysis is used to formulate the method. The governing differential equations are derived by requiring the curvature tensor of the flat 3-D physical Eucledian space to be zero. The resulting equations are discussed and investigated with particular emphasis on the existence and uniqueness of their solution. en
heal.publisher Cambridge Univ Press, New York, NY, United States en
heal.journalName Journal of Fluid Mechanics en
dc.identifier.doi 10.1017/S0022112095000061 en
dc.identifier.volume 282 en
dc.identifier.spage 131 en
dc.identifier.epage 146 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής