HEAL DSpace

On the 3-D inverse potential target pressure problem. Part 2. Numerical aspects and application to duct design

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dedoussis, V en
dc.contributor.author Chaviaropoulos, P en
dc.contributor.author Papailiou, KD en
dc.date.accessioned 2014-03-01T01:11:18Z
dc.date.available 2014-03-01T01:11:18Z
dc.date.issued 1995 en
dc.identifier.issn 00221120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11601
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Ducts en
dc.subject.other Equations of motion en
dc.subject.other Finite difference method en
dc.subject.other Integration en
dc.subject.other Inverse problems en
dc.subject.other Nozzles en
dc.subject.other Three dimensional en
dc.subject.other GMRES algorithm en
dc.subject.other Potential function/stream function formulation en
dc.subject.other Three dimensional inverse potential target pressure problem en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computational Fluid Dynamics en
dc.subject.other Ducts en
dc.subject.other Flow en
dc.subject.other Geometrical Effects en
dc.title On the 3-D inverse potential target pressure problem. Part 2. Numerical aspects and application to duct design en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0022112095000073 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0022112095000073 en
heal.publicationDate 1995 en
heal.abstract A potential function/stream function formulation is introduced for the solution of the fully 3-D inverse potential `target pressure' problem. In the companion paper (Part 1) it is seen that the general 3-D inverse problem is ill-posed but accepts as a particular solution elementary streamtubes with orthogonal cross-section. Under this simplification, a novel set of flow equations was derived and discussed. The purpose of the present paper is to present the computational techniques used for the numerical integration of the flow and geometry equations proposed in Part 1. The governing flow equations are discretized with centred finite difference schemes on a staggered grid and solved in their linearized form using the preconditioned GMRES algorithm. The geometry equations which form a set of first-order o.d.e.s are integrated numerically using a second-order-accurate space marching scheme. The resulting computational algorithm is applied to a double turning duct and a 3-D converging-diverging nozzle `reproduction' test case. en
heal.publisher Cambridge Univ Press, New York, NY, United States en
heal.journalName Journal of Fluid Mechanics en
dc.identifier.doi 10.1017/S0022112095000073 en
dc.identifier.volume 282 en
dc.identifier.spage 147 en
dc.identifier.epage 162 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής