dc.contributor.author |
Stefanakis, E |
en |
dc.contributor.author |
Kavouras, M |
en |
dc.date.accessioned |
2014-03-01T01:11:19Z |
|
dc.date.available |
2014-03-01T01:11:19Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11602 |
|
dc.subject |
Three Dimensional |
en |
dc.subject |
Travel Cost |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
SHORTEST PATHS |
en |
dc.subject.other |
ALGORITHMS |
en |
dc.title |
On the determination of the optimum path in space |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/3-540-60392-1_16 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-60392-1_16 |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Various algorithms have been proposed for the determination of the optimum paths in line networks. Moving in space is a far more complex problem, where research has been scarce. An example would be the determination of the shortest sea course between two given ports. This paper presents an examination of the problem, states the weaknesses of the existing solutions, and introduces a new approach, which can be easily applied to a variety of spaces, while considering different travel cost models. The implementation of the algorithm for movements on the plane surface, in the three-dimensional space, and on the spherical surface as an approximation of the earth, has been examined. The results are illustrated through several examples. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
SPATIAL INFORMATION THEORY |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/3-540-60392-1_16 |
en |
dc.identifier.isi |
ISI:A1995BF24Q00016 |
en |
dc.identifier.volume |
988 |
en |
dc.identifier.spage |
241 |
en |
dc.identifier.epage |
257 |
en |