HEAL DSpace

On the Frechet differentiability of boundary integral operators in the inverse elastic scattering problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalambopoulos, A en
dc.date.accessioned 2014-03-01T01:11:19Z
dc.date.available 2014-03-01T01:11:19Z
dc.date.issued 1995 en
dc.identifier.issn 0266-5611 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11604
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Mathematical en
dc.title On the Frechet differentiability of boundary integral operators in the inverse elastic scattering problem en
heal.type journalArticle en
heal.identifier.primary 10.1088/0266-5611/11/6/002 en
heal.identifier.secondary http://dx.doi.org/10.1088/0266-5611/11/6/002 en
heal.identifier.secondary 002 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract This paper is concerned with the study of the Frechet differentiability properties of the operator connecting the scattered field with scatterer's surface in the framework of the inverse elastic scattering problem. We adopt the integral equation approach, which transfers the solution of the inverse problem to the solution of a boundary integral equation of the second kind. We study the behaviour of the appeared integral operators and prove that they constitute Frechet differentiable operators. As we show, this result leads to the conclusion that the scattered elastic field is Frechet differentiable with respect to the boundary of the scatterer. Finally we present a characterization of the Frechet derivative of the scattered field as the solution of a direct scattering elastic problem with suitable Dirichlet boundary conditions. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Inverse Problems en
dc.identifier.doi 10.1088/0266-5611/11/6/002 en
dc.identifier.isi ISI:A1995TL05600002 en
dc.identifier.volume 11 en
dc.identifier.issue 6 en
dc.identifier.spage 1137 en
dc.identifier.epage 1161 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής