dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:11:23Z |
|
dc.date.available |
2014-03-01T01:11:23Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0167-7152 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11614 |
|
dc.subject |
Associated polynomial |
en |
dc.subject |
Autocorrelation |
en |
dc.subject |
Construction |
en |
dc.subject |
Optimal designs |
en |
dc.subject |
Sequence |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.title |
Optimal weighing designs and some new weighing matrices |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-7152(94)00203-K |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-7152(94)00203-K |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
In experimental situations where n three-level factors are involved and n observations are taken, we obtain orthogonal designs from weighing matrices. In factorial experiments the use of orthogonal designs contributes decisively to the reduction of variance which is considered to be a significant factor in the improvement of industrial products. Sequences with elements 0, 1, -1 and zero autocorrelation function can be used to construct weighing matrices. In this paper we discuss some constructions of weighing designs. We give some new {0,1, -1} sequences with zero autocorrelation function from which we construct some new weighing matrices. © 1995. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Statistics and Probability Letters |
en |
dc.identifier.doi |
10.1016/0167-7152(94)00203-K |
en |
dc.identifier.isi |
ISI:A1995TB24900006 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
37 |
en |
dc.identifier.epage |
42 |
en |