HEAL DSpace

Solution of large electromagnetic problems made feasible by HPC - Reducing execution times from months to hours

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marsh, A en
dc.contributor.author Kaklamani, DI en
dc.date.accessioned 2014-03-01T01:11:29Z
dc.date.available 2014-03-01T01:11:29Z
dc.date.issued 1995 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11663
dc.subject Electromagnetic Scattering en
dc.subject High Performance Computer en
dc.subject Integral Equation en
dc.subject Parallel Computer en
dc.subject Method of Moment en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other GRADIENT FFT METHOD en
dc.subject.other PLATE PROBLEMS en
dc.subject.other SCATTERING en
dc.subject.other EXPANSIONS en
dc.title Solution of large electromagnetic problems made feasible by HPC - Reducing execution times from months to hours en
heal.type journalArticle en
heal.identifier.primary 10.1007/BFb0046644 en
heal.identifier.secondary http://dx.doi.org/10.1007/BFb0046644 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract There are two major advantages of applying High Performance Computing (HPC) to electromagnetic problems. Firstly, to reduce execution times of a given size of problem from days/hours to minutes/seconds. Secondly, the purpose of this paper, to investigate problems, that were so computationally expense, that they were practically ''unsolvable''. Pioneering research work in such areas becomes an arduous tedious endeavour. However, HPC now provides the computational power necessary to solve these large electromagnetic problems. Parallel computations of an integral equation technique, in conjunction with a method of moments (MoM) is introduced, in examining electromagnetic illumination of electrically large planar scatterers. To this end, the electromagnetic scattering of an incident wave illuminating an electrically large conducting rectangular plate of infinitesimal thickness is analysed. An integral equation is derived, in terms of the conductivity currents induced on the plate surface, which is solved by employing entire domain Galerkin technique, with Chebyshev type basis functions. The resulting algorithm parallelisation enables extension of the proposed methodology above the resonance region. Numerical results are computed for several scatterer sizes and excitation source types, with impressive near-linear speedups. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName HIGH-PERFORMANCE COMPUTING AND NETWORKING en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/BFb0046644 en
dc.identifier.isi ISI:A1995BE66H00044 en
dc.identifier.volume 919 en
dc.identifier.spage 300 en
dc.identifier.epage 305 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής