HEAL DSpace

Solution of plane elasticity problems with Mathematica

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ioakimidis, NI en
dc.contributor.author Anastasselos, GT en
dc.date.accessioned 2014-03-01T01:11:29Z
dc.date.available 2014-03-01T01:11:29Z
dc.date.issued 1995 en
dc.identifier.issn 0045-7949 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11664
dc.subject Approximate Solution en
dc.subject biharmonic equation en
dc.subject Boundary Condition en
dc.subject Boundary Element en
dc.subject Computer Algebra System en
dc.subject Finite Element Method en
dc.subject Functional Equation en
dc.subject Programming Language en
dc.subject Satisfiability en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Civil en
dc.subject.other Boolean algebra en
dc.subject.other Boundary element method en
dc.subject.other Computational complexity en
dc.subject.other Computer aided analysis en
dc.subject.other Finite element method en
dc.subject.other Integral equations en
dc.subject.other Mathematical programming en
dc.subject.other Complex potentials en
dc.subject.other Fredholm integral equations en
dc.subject.other Muskhelishvili general method en
dc.subject.other Software Package Mathematica en
dc.subject.other Elasticity en
dc.title Solution of plane elasticity problems with Mathematica en
heal.type journalArticle en
heal.identifier.primary 10.1016/0045-7949(94)00467-H en
heal.identifier.secondary http://dx.doi.org/10.1016/0045-7949(94)00467-H en
heal.language English en
heal.publicationDate 1995 en
heal.abstract The classical complex-variable method of Muskhelishvili for the solution of general plane elasticity problems is revisited. The boundary conditions are satisfied automatically and the related functional equation of Muskhelishvili is approximately solved by selection of the collocation points outside the elastic medium. This ensures the approximate solution of the biharmonic equation of plane elasticity. This approach is completely different from boundary element and finite element methods, since the main attempt is to satisfy the analyticity of the complex potentials (almost equivalently, the biharmonic equation) and not the boundary conditions or both of these. The modern and powerful computer algebra system Mathematica was selected as an appropriate programming language for the related computer procedure, which is also given. Symbolic parameters can also be used in the computing environment offered by Mathematica. Numerical and semi-numerical results in a special application (elliptical region) are also presented and seen to converge rapidly. Both cases of the first and the second fundamental problems are considered. © 1995. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Structures en
dc.identifier.doi 10.1016/0045-7949(94)00467-H en
dc.identifier.isi ISI:A1995QP09000005 en
dc.identifier.volume 55 en
dc.identifier.issue 2 en
dc.identifier.spage 229 en
dc.identifier.epage 236 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής