HEAL DSpace

The influence of the exhaust system unsteady gas flow and insulation on the performance of a turbocharged diesel engine

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rakopoulos, CD en
dc.contributor.author Andritsakis, EC en
dc.contributor.author Hountalas, DT en
dc.date.accessioned 2014-03-01T01:11:33Z
dc.date.available 2014-03-01T01:11:33Z
dc.date.issued 1995 en
dc.identifier.issn 0890-4332 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11691
dc.subject Computer Program en
dc.subject Diesel Engine en
dc.subject Fluid Dynamics en
dc.subject Gas Flow en
dc.subject Heat Transfer en
dc.subject High Speed en
dc.subject Indexation en
dc.subject Parametric Study en
dc.subject Partial Differential Equation en
dc.subject Second Law en
dc.subject Thermodynamics en
dc.subject Time Varying en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.title The influence of the exhaust system unsteady gas flow and insulation on the performance of a turbocharged diesel engine en
heal.type journalArticle en
heal.identifier.primary 10.1016/0890-4332(95)90037-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/0890-4332(95)90037-3 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract A comprehensive digital computer program is used to simulate the unsteady gas flow in the exhaust and inlet systems of a multi-cylinder, turbocharged, medium-high speed, four-stroke diesel engine installed at the authors' laboratory. The simulation assumes one-dimensional, time-varying gas flow in the engine pipes and incorporates numerous realistic fluid dynamic, thermodynamic and heat-transfer features. The characteristic mathematical transformation solution of the gas-flow dynamics partial differential equations is interfaced with First-Law analysis models of the cylinders main chambers and prechambers. The simulation results are compared most favourably against the engine's experimental performance results, which include mean air consumption rate, pressure histories at various locations on the exhaust system, and energy-mean temperature values at the exit of the exhaust system. The simulation results are also utilized for the determination of the various cylinders' exhaust waves intensity, as they are imposed by the design characteristics of the exhaust manifold. The plotting of relevant charts, showing the contour variation of gas pressure, temperature and Mach index against engine crank angle and pipe length, aids the correct interpretation of the observed behaviour. The detailed simulation of the fluid dynamic and heat-transfer fields in the engine exhaust system, permits an interesting parametric study of the influence of the degree of insulation of the exhaust system on the energy and exergy (availability) content of the exhaust gases before the turbocharger turbine, by coupling the above First-Law with Second-Law analysis concepts. © 1994. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Heat Recovery Systems and CHP en
dc.identifier.doi 10.1016/0890-4332(95)90037-3 en
dc.identifier.isi ISI:A1995PV62600006 en
dc.identifier.volume 15 en
dc.identifier.issue 1 en
dc.identifier.spage 51 en
dc.identifier.epage 72 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής