HEAL DSpace

The reconstruction of the surface of scatterers with continuous curvature via low-frequency moments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalambopoulos, A en
dc.date.accessioned 2014-03-01T01:11:33Z
dc.date.available 2014-03-01T01:11:33Z
dc.date.issued 1995 en
dc.identifier.issn 0272-4960 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11695
dc.subject.classification Mathematics, Applied en
dc.subject.other HARMONIC ACOUSTIC-WAVES en
dc.subject.other INVERSE SCATTERING en
dc.subject.other RESONANCE REGION en
dc.title The reconstruction of the surface of scatterers with continuous curvature via low-frequency moments en
heal.type journalArticle en
heal.identifier.primary 10.1093/imamat/54.2.171 en
heal.identifier.secondary http://dx.doi.org/10.1093/imamat/54.2.171 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract In this work, the reconstruction of the shape of an acoustically soft scatterer from knowledge of the scattering amplitude is examined. It is demonstrated that if we work in the low-frequency region and the scatterer's surface is assumed to have continuous curvature then we can construct polynomial surfaces tending to coincide with the scatterer's surface as their degree increases. The proposed method is stable in such a way that small measurement errors lead to small changes of the polynomial surfaces approximating the scatterer's surface. © 1995 Oxford University Press. en
heal.publisher OXFORD UNIV PRESS UNITED KINGDOM en
heal.journalName IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) en
dc.identifier.doi 10.1093/imamat/54.2.171 en
dc.identifier.isi ISI:A1995RB18400005 en
dc.identifier.volume 54 en
dc.identifier.issue 2 en
dc.identifier.spage 171 en
dc.identifier.epage 201 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής