dc.contributor.author |
Mitropoulos, S |
en |
dc.contributor.author |
Assimakopoulos, V |
en |
dc.contributor.author |
Charalabidis, Y |
en |
dc.date.accessioned |
2014-03-01T01:11:34Z |
|
dc.date.available |
2014-03-01T01:11:34Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
01679236 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11707 |
|
dc.subject |
Compute graphics |
en |
dc.subject |
Decision support systems |
en |
dc.subject |
Demand-side management |
en |
dc.subject |
Load analysis |
en |
dc.subject |
Pattern recognition |
en |
dc.subject.other |
Computer graphics |
en |
dc.subject.other |
Electric load management |
en |
dc.subject.other |
Electric power utilization |
en |
dc.subject.other |
Electric utilities |
en |
dc.subject.other |
Energy policy |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Two dimensional color pattern load analysis |
en |
dc.subject.other |
Decision support systems |
en |
dc.title |
Two-dimensional colour pattern load analysis: A tool supporting demand-side management |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-9236(93)E0054-H |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-9236(93)E0054-H |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Load analysis is one of the most important operations that support demand-side management in large electric utilities. Ordinary load analysis techniques stress on statistical processing of hourly load data along predefined time axes, producing numerical results of a standard granularity, such as daily or weekly mean loads. In order to overcome these limitations, a new approach or load analysis was developed, based on applying a two-dimensional formulation of the hourly load data. The tables holding energy consumption values, where columns represent the days of the selected period and lines represent the 24 hours of the day, are then illustrated through the use of colour patterns. In such a way, chronological typical units of variable structure and granularity can be identified and provide the basis for an extensive cross-examination, resulting in optimized decision making and energy policy definition. In order to demonstrate the advantages of the approach, a dedicated DSS implementation and application in the Greek public power corporation was also performed. © 1995. |
en |
heal.journalName |
Decision Support Systems |
en |
dc.identifier.doi |
10.1016/0167-9236(93)E0054-H |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
159 |
en |
dc.identifier.epage |
166 |
en |