HEAL DSpace

ULTRASHORT SOLITARY-WAVE PROPAGATION IN DIELECTRIC MEDIA WITH RESONANCE-DOMINATED CHROMATIC DISPERSION

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author FRANTZESKAKIS, DJ en
dc.contributor.author HIZANIDIS, K en
dc.contributor.author POLYMILIS, C en
dc.date.accessioned 2014-03-01T01:11:34Z
dc.date.available 2014-03-01T01:11:34Z
dc.date.issued 1995 en
dc.identifier.issn 0740-3224 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11709
dc.subject Solitary Wave en
dc.subject Chromatic Dispersion en
dc.subject.classification Optics en
dc.subject.other NONLINEAR SCHRODINGER-EQUATION en
dc.subject.other SELF-PHASE MODULATION en
dc.subject.other OPTICAL FIBERS en
dc.subject.other FEMTOSECOND SOLITONS en
dc.subject.other PULSE-PROPAGATION en
dc.subject.other ANOMALOUS DISPERSION en
dc.subject.other MONOMODE FIBER en
dc.subject.other TRANSMISSION en
dc.subject.other AMPLIFIERS en
dc.subject.other WAVEGUIDES en
dc.title ULTRASHORT SOLITARY-WAVE PROPAGATION IN DIELECTRIC MEDIA WITH RESONANCE-DOMINATED CHROMATIC DISPERSION en
heal.type journalArticle en
heal.identifier.primary 10.1364/JOSAB.12.000687 en
heal.identifier.secondary http://dx.doi.org/10.1364/JOSAB.12.000687 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract Nonlinear pulse propagation in single-mode inhomogeneous dielectric waveguides is analyzed by means of the reductive perturbation method. The chromatic dispersion of the fiber takes impurity-related resonance phenomena into account, while the nonlinear properties are described by means of a time- (frequency-) dependent dielectric constant with cubic nonlinearity. For the case of short-envelope propagation, a perturbed nonlinear Schrodinger equation, reflecting higher-order linear and nonlinear effects, is derived and then transformed into a generalized higher-order nonlinear Schrodinger (GHONLS) equation that is valid for both the anomalous- and the normal-dispersion regimes. In the search for quasi-stationary-wave solutions the GHONLS equation is then reduced to a nonlinear ordinary differential equation, which is analyzed by phase-space analysis. The latter leads to bright- and dark-soliton solutions that can be analytically derived and correspond to separatrices on the phase plane of the associated dynamical system. Emphasis is given to the connections among the initial spatiotemporal pulse information and the types of mode (bright or dark solitons) that can be excited. en
heal.publisher OPTICAL SOC AMER en
heal.journalName JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS en
dc.identifier.doi 10.1364/JOSAB.12.000687 en
dc.identifier.isi ISI:A1995QR25500021 en
dc.identifier.volume 12 en
dc.identifier.issue 4 en
dc.identifier.spage 687 en
dc.identifier.epage 697 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής