HEAL DSpace

A family of fifth-order Runge-Kutta pairs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papakostas, SN en
dc.contributor.author Papageorgiou, G en
dc.date.accessioned 2014-03-01T01:11:35Z
dc.date.available 2014-03-01T01:11:35Z
dc.date.issued 1996 en
dc.identifier.issn 0025-5718 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11723
dc.subject Initial value problems en
dc.subject Pairs of embedded methods en
dc.subject Phase-lag en
dc.subject Runge-Kutta en
dc.subject.classification Mathematics, Applied en
dc.subject.other Convergence of numerical methods en
dc.subject.other Differential equations en
dc.subject.other Nonlinear equations en
dc.subject.other Equation system en
dc.subject.other Initial value problem en
dc.subject.other Numerical integration en
dc.subject.other Runge Kutta method en
dc.subject.other Truncation error en
dc.subject.other Numerical methods en
dc.title A family of fifth-order Runge-Kutta pairs en
heal.type journalArticle en
heal.identifier.primary 10.1090/S0025-5718-96-00718-1 en
heal.identifier.secondary http://dx.doi.org/10.1090/S0025-5718-96-00718-1 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract The construction of a Runge-Kutta pair of order 5(4) with the minimal number of stages requires the solution of a nonlinear system of 25 order conditions in 27 unknowns. We define a new family of pairs which includes pairs using 6 function evaluations per integration step as well as pairs which additionally use the first function evaluation from the next step. This is achieved by making use of Kutta's simplifying assumption on the original system of the order conditions, i.e., that all the internal nodes of a method contributing to the estimation of the endpoint solution provide, at these nodes, cost-free second-order approximations to the true solution of any differential equation. In both cases the solution of the resulting system of nonlinear equations is completely classified and described in terms of five free parameters. Optimal Runge-Kutta pairs with respect to minimized truncation error coefficients, maximal phase-lag order and various stability characteristics are presented. These pairs were selected under the assumption that they are used in Local Extrapolation Mode (the propagated solution of a problem is the one provided by the fifth-order formula of the pair). Numerical results obtained by testing the new pairs over a standard set of test problems suggest a significant improvement in efficiency when using a specific pair of the new family with minimized truncation error coefficients, instead of some other existing pairs. en
heal.publisher AMER MATHEMATICAL SOC en
heal.journalName Mathematics of Computation en
dc.identifier.doi 10.1090/S0025-5718-96-00718-1 en
dc.identifier.isi ISI:A1996UR11400013 en
dc.identifier.volume 65 en
dc.identifier.issue 215 en
dc.identifier.spage 1165 en
dc.identifier.epage 1181 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής