dc.contributor.author |
Tzafestas, S |
en |
dc.contributor.author |
Raptis, S |
en |
dc.contributor.author |
Stamou, G |
en |
dc.date.accessioned |
2014-03-01T01:11:35Z |
|
dc.date.available |
2014-03-01T01:11:35Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0378-4754 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11725 |
|
dc.subject |
Decision Making |
en |
dc.subject |
Fuzzy Inference |
en |
dc.subject |
Fuzzy Rules |
en |
dc.subject |
Knowledge Base |
en |
dc.subject |
Multi Input Multi Output |
en |
dc.subject |
Multi Input Single Output |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Single Input Single Output |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Decision theory |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Inference engines |
en |
dc.subject.other |
Knowledge based systems |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Flexible inference cells |
en |
dc.subject.other |
Multi input multi output |
en |
dc.subject.other |
Multi input single output |
en |
dc.subject.other |
Single input single output |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
A flexible neurofuzzy cell structure for general fuzzy inference |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0378-4754(95)00072-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0378-4754(95)00072-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
This paper presents and investigates a neural network structure which can perform general fuzzy inference. This system consists of a number of parallel neural network units which are called ""flexible inference cells"" (FICs). Each FIC implements a single-input/single-output (SISO) IF-THEN rule of a fuzzy knowledge base. The assumption of SISO fuzzy rules allows the implementation of any complex fuzzy inference algorithm (for control or other decision making purposes), since any MIMO (multi-input/multi-output) rule can be decomposed into an equivalent set of MISO (multi-input/single-output) rules, and a MISO rule can be decomposed to a set of SISO rules. The paper discusses the assumptions and requirements for the proposed neurofuzzy structure, and classifies the FICs into four categories. Some results derived by simulation using 3125 exemplar patterns produced computationally are provided. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Mathematics and Computers in Simulation |
en |
dc.identifier.doi |
10.1016/0378-4754(95)00072-0 |
en |
dc.identifier.isi |
ISI:A1996UW30700004 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
219 |
en |
dc.identifier.epage |
233 |
en |