HEAL DSpace

A genetic algorithm for operation optimization of an industrial cogeneration system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Manolas, DA en
dc.contributor.author Gialamas, TP en
dc.contributor.author Frangopoulos, CA en
dc.contributor.author Tsahalis, DT en
dc.date.accessioned 2014-03-01T01:11:35Z
dc.date.available 2014-03-01T01:11:35Z
dc.date.issued 1996 en
dc.identifier.issn 0098-1354 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11728
dc.subject Continuous Variable en
dc.subject Genetic Algorithm en
dc.subject Genetics en
dc.subject Objective Function en
dc.subject Optimization Problem en
dc.subject Simulation Model en
dc.subject Expert System en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Chemical en
dc.title A genetic algorithm for operation optimization of an industrial cogeneration system en
heal.type journalArticle en
heal.identifier.primary 10.1016/0098-1354(96)00192-5 en
heal.identifier.secondary http://dx.doi.org/10.1016/0098-1354(96)00192-5 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract Genetic Algorithms (GAs) have been developed in the last three decades in an attempt to imitate the mechanics of the selection process in natural genetics. They also contain many elements of expert systems. In the present work, a GA is applied for the optimization of the operation of a cogeneration system, which supplies a process plant with electricity and steam at various pressure levels. A mathematical simulation model of the system has been developed taking into consideration the real conditions of the main equipment, as determined by an appropriate set of measurements. The GA is combined with the simulation model in order to solve the optimization problem under specified constraints. The capability of GAs to handle objective functions of any complexity with both discrete (e.g., integer) and continuous variables, as well as their capability of optimizing only on the basis of the results of the simulation model, make GAs successful in this type of problems. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Chemical Engineering en
dc.identifier.doi 10.1016/0098-1354(96)00192-5 en
dc.identifier.isi ISI:A1996UR31000057 en
dc.identifier.volume 20 en
dc.identifier.issue SUPPL.2 en
dc.identifier.spage S1107 en
dc.identifier.epage S1112 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής