dc.contributor.author |
Papazoglou, VJ |
en |
dc.contributor.author |
Tsouvalis, NG |
en |
dc.contributor.author |
Lazaridis, AG |
en |
dc.date.accessioned |
2014-03-01T01:11:36Z |
|
dc.date.available |
2014-03-01T01:11:36Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0929-189X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11738 |
|
dc.subject |
Composite materials |
en |
dc.subject |
Modal analysis |
en |
dc.subject |
Vibration |
en |
dc.subject.classification |
Materials Science, Composites |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Lagrange multipliers |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nondestructive examination |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Bayesian parameter estimation |
en |
dc.subject.other |
Classical lamination theory |
en |
dc.subject.other |
Higher order shear deformation theory |
en |
dc.subject.other |
Laminated plate |
en |
dc.subject.other |
Plate rigidity |
en |
dc.subject.other |
Rayleigh-Ritz method |
en |
dc.subject.other |
Laminated composites |
en |
dc.title |
A non-destructive evaluation of the material properties of a composite laminated plate |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00134974 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00134974 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
A non-destructive method for the evaluation of material properties of a rectangular, anisotropic, homogeneous plate with four free edges is presented. The method consists of two steps. In the first step, a certain number of the plate's natural frequencies are experimentally measured. In the second step, the plate rigidities are varied in a theoretical model, so that the calculated natural frequencies match as close as possible the corresponding experimental values. Two such models are presented, based on the Classical Lamination Theory and on a Higher Order Shear Deformation Theory. High order Lagrange polynomials are used as deflection functions and the Rayleigh-Ritz procedure is employed to arrive at the solution. The identification of the plate rigidities is done by means of an iterative Bayesian parameter estimation method, where possible measurement errors or rigidities' uncertainties can be taken into account. © 1996 Kluwer Academic Publishers. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Applied Composite Materials |
en |
dc.identifier.doi |
10.1007/BF00134974 |
en |
dc.identifier.isi |
ISI:A1996WT81000006 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
321 |
en |
dc.identifier.epage |
334 |
en |