dc.contributor.author |
Likas, A |
en |
dc.contributor.author |
Blekas, K |
en |
dc.date.accessioned |
2014-03-01T01:11:37Z |
|
dc.date.available |
2014-03-01T01:11:37Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
1370-4621 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11744 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030349546&partnerID=40&md5=c05164ad874cfa914181680c1b8599f6 |
en |
dc.subject |
Autonomous vehicle navigation |
en |
dc.subject |
Fuzzy min-max neural network |
en |
dc.subject |
Reinforcement learning |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Neurosciences |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Navigation |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Robots |
en |
dc.subject.other |
Fuzzy min max neural networks |
en |
dc.subject.other |
Reinforcement learning |
en |
dc.subject.other |
Learning systems |
en |
dc.title |
A reinforcement learning approach based on the fuzzy min-max neural network |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The fuzzy min-max neural network constitutes a neural architecture that is based on hyperbox fuzzy sets and can be incrementally trained by appropriately adjusting the number of hyperboxes and their corresponding volumes. Two versions have been proposed: for supervised and unsupervised learning. In this paper a modified approach is presented that is appropriate for reinforcement learning problems with discrete action space and is applied to the difficult task of autonomous vehicle navigation when no a priori knowledge of the enivronment is available. Experimental results indicate that the proposed reinforcement learning network exhibits superior learning behavior compared to conventional reinforcement schemes. © 1996 Kluwer Academic Publishers. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Neural Processing Letters |
en |
dc.identifier.isi |
ISI:A1996WN61100006 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
167 |
en |
dc.identifier.epage |
172 |
en |