HEAL DSpace

A two-phase connectionist approach to invariant picture interpretation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kontoravdis, D en
dc.contributor.author Kollias, S en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:11:38Z
dc.date.available 2014-03-01T01:11:38Z
dc.date.issued 1996 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11757
dc.subject Individual Object en
dc.subject Learning Automata en
dc.subject Neural Network Classifier en
dc.subject Parallel Implementation en
dc.subject Relaxation Scheme en
dc.subject Simulation Experiment en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other Automata theory en
dc.subject.other Computer simulation en
dc.subject.other Computer vision en
dc.subject.other Correlation theory en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Object recognition en
dc.subject.other Parallel processing systems en
dc.subject.other Random processes en
dc.subject.other Relaxation processes en
dc.subject.other Invariant picture representation en
dc.subject.other Neural network classifiers en
dc.subject.other Probabilistic assignment en
dc.subject.other Stochastic learning automata en
dc.subject.other Third order image correlations en
dc.subject.other Two phase connectionist techniques en
dc.subject.other Image analysis en
dc.title A two-phase connectionist approach to invariant picture interpretation en
heal.type journalArticle en
heal.identifier.primary 10.1016/0378-4754(95)00009-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/0378-4754(95)00009-7 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract The paper presents an efficient two-phase approach to picture interpretation based on original connectionist techniques. During the first phase invariant representations of individual objects are obtained based on third-order image correlations and appropriate neural network classifiers are used to provide a probabilistic assignment of labels to objects. The second phase uses relationships between objects to reduce or eliminate ambiguity by means of a relaxation scheme based on stochastic learning automata. Both phases are particularly suited to parallel implementation. Simulation experiments revealed the effectiveness of our approach in solving several problems of small and medium sizes. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Mathematics and Computers in Simulation en
dc.identifier.doi 10.1016/0378-4754(95)00009-7 en
dc.identifier.isi ISI:A1996UR67100008 en
dc.identifier.volume 40 en
dc.identifier.issue 5-6 SPEC. ISS. en
dc.identifier.spage 597 en
dc.identifier.epage 613 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής