HEAL DSpace

Ad hoc exact solutions for the stress and velocity fields in rigid, perfectly plastic materials under plane-strain conditions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panayotounakos, DE en
dc.date.accessioned 2014-03-01T01:11:39Z
dc.date.available 2014-03-01T01:11:39Z
dc.date.issued 1996 en
dc.identifier.issn 0749-6419 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11760
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Numerical analysis en
dc.subject.other Partial differential equations en
dc.subject.other Plasticity en
dc.subject.other Problem solving en
dc.subject.other Strain en
dc.subject.other Stress concentration en
dc.subject.other Velocity en
dc.subject.other Ad Hoc exact solutions en
dc.subject.other Incompressibility en
dc.subject.other Plane stress conditions en
dc.subject.other Saint Venant-Von Mises theory en
dc.subject.other Von Mises Hencky condition en
dc.subject.other Plastics en
dc.title Ad hoc exact solutions for the stress and velocity fields in rigid, perfectly plastic materials under plane-strain conditions en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0749-6419(96)00042-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0749-6419(96)00042-3 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract Making use of convenient ad hoc assumptions we construct analytical and closed-form solutions for the problem of stress and velocity states in statically determinate rigid, perfectly plastic bodies under plane-strain conditions. The obtained solutions are expressed either implicitly including arbitrary functions, or explicitly in the form of specific functions. For the stresses they are extracted by means of the two equilibrium partial differential equations (PDEs) and the appropriate von Mises-Hencky condition; for the velocities we use the Saint Venant-von Mises theory of plasticity PDEs and the condition of incompressibility. The possibility of extending the developed solution technique for plane stress conditions is presented. Finally, several applications concerning the inverse, semi-inverse and direct problems are examined. The advantage of the proposed analytical solution methodology compared to the technique of characteristics is the general applicability delivering from the a priori construction of the slip-lines, as well as the demanded numerical solutions of the corresponding equations of characteristics. Copyright (C) 1996 Elsevier Science Ltd en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Plasticity en
dc.identifier.doi 10.1016/S0749-6419(96)00042-3 en
dc.identifier.isi ISI:A1996WE15300006 en
dc.identifier.volume 12 en
dc.identifier.issue 8 en
dc.identifier.spage 1069 en
dc.identifier.epage 1109 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής