HEAL DSpace

Adaptive detection of noisy speech using third-order statistics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rangoussi, M en
dc.contributor.author Carayannis, G en
dc.date.accessioned 2014-03-01T01:11:39Z
dc.date.available 2014-03-01T01:11:39Z
dc.date.issued 1996 en
dc.identifier.issn 0890-6327 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11761
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-3743097049&partnerID=40&md5=96af6297b7661fcb48451e074c945a40 en
dc.subject Adaptive en
dc.subject Detection en
dc.subject Speech en
dc.subject Third-order cumulants en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Adaptive control systems en
dc.subject.other Algorithms en
dc.subject.other Detectors en
dc.subject.other Feedback en
dc.subject.other Performance en
dc.subject.other Signal detection en
dc.subject.other Signal to noise ratio en
dc.subject.other Speech en
dc.subject.other Spurious signal noise en
dc.subject.other Statistical methods en
dc.subject.other Additive noises en
dc.subject.other Decision feedback en
dc.subject.other Gaussianity test en
dc.subject.other Noisy speech en
dc.subject.other Speech detection en
dc.subject.other Speech intervals en
dc.subject.other Third order cumulants en
dc.subject.other Speech processing en
dc.title Adaptive detection of noisy speech using third-order statistics en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1996 en
heal.abstract Detection of speech in noisy recordings is challenging, especially when the noise does not follow the usual whiteness, stationarity and high signal-to-noise ratio assumptions. A robust speech detector can affect significantly the performance of several speech-processing tasks, such as endpoint detection, segmentation and finally recognition, if we deal with real life data as opposed to laboratory or controlled environment recordings. The detector proposed in this paper is based on a Gaussianity test that employs third-order cumulants of the data to decide on the binary hypotheses of noise only versus speech plus noise. Speech intervals are detected by exploiting the third-order information present in the speech signal. The detector can tolerate a large family of additive noises thanks to its third-order statistics basis. The sample-adaptive and decision feedback variations proposed here provide the detector with tracking ability with respect to both the time variations of speech and the possible non-stationarity of noise. Experiments carried out using real data recorded in a moving car interior show satisfactory performance of the proposed algorithms down to - 6 dB signal-to-noise ratio. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal of Adaptive Control and Signal Processing en
dc.identifier.isi ISI:A1996UD00700003 en
dc.identifier.volume 10 en
dc.identifier.issue 2 en
dc.identifier.spage 113 en
dc.identifier.epage 136 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής