dc.contributor.author |
Nerantzaki, MS |
en |
dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:11:39Z |
|
dc.date.available |
2014-03-01T01:11:39Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0955-7997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11764 |
|
dc.subject |
Analog equation |
en |
dc.subject |
Boundary element |
en |
dc.subject |
Boundary integral equation |
en |
dc.subject |
Elastic plate |
en |
dc.subject |
Variable thickness |
en |
dc.subject |
Vibration |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Bending (deformation) |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Loads (forces) |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Piecewise linear techniques |
en |
dc.subject.other |
Vibrations (mechanical) |
en |
dc.subject.other |
Analog equation method |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Fourth order partial differential equation |
en |
dc.subject.other |
Quasi static plate bending problem |
en |
dc.subject.other |
Plates (structural components) |
en |
dc.title |
An analog equation solution to dynamic analysis of plates with variable thickness |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0955-7997(96)00010-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0955-7997(96)00010-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The analog equation method (AEM) is applied to dynamic analysis of plates with variable thickness. Both free and forced vibrations are considered. The fourth order partial differential equation with variable coefficients governing the dynamic response of the plate is converted to a quasi-static plate bending problem under a fictitious time dependent load. The fictitious load is established using the AEM. Numerical examples are presented which illustrate the efficiency and accuracy of the method. Copyright (C) 1996 Elsevier Science Ltd. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Analysis with Boundary Elements |
en |
dc.identifier.doi |
10.1016/0955-7997(96)00010-0 |
en |
dc.identifier.isi |
ISI:A1996UZ51300007 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
2 SPEC. ISS. |
en |
dc.identifier.spage |
145 |
en |
dc.identifier.epage |
152 |
en |