HEAL DSpace

An improved neural network for fuzzy reasoning implementation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Stamou, GB en
dc.date.accessioned 2014-03-01T01:11:40Z
dc.date.available 2014-03-01T01:11:40Z
dc.date.issued 1996 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11774
dc.subject connectionist models en
dc.subject Decision Making Process en
dc.subject Fuzzy Reasoning en
dc.subject Fuzzy Set en
dc.subject Fuzzy System en
dc.subject Human Performance en
dc.subject neuro-fuzzy system en
dc.subject Expert System en
dc.subject neuro fuzzy inference system en
dc.subject Neural Net en
dc.subject Neural Network en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other Computer architecture en
dc.subject.other Computer simulation en
dc.subject.other Decision making en
dc.subject.other Fuzzy sets en
dc.subject.other Inference engines en
dc.subject.other Learning systems en
dc.subject.other Parallel processing systems en
dc.subject.other Theorem proving en
dc.subject.other Collective system en
dc.subject.other Connectionist models en
dc.subject.other Fuzzy reasoning en
dc.subject.other Hamacher fuzzy intersection function en
dc.subject.other Human performance en
dc.subject.other Neuro-fuzzy inference system en
dc.subject.other Parallel interconnections en
dc.subject.other Sugeno complement function en
dc.subject.other Trapezoidal fuzzy sets en
dc.subject.other Neural networks en
dc.title An improved neural network for fuzzy reasoning implementation en
heal.type journalArticle en
heal.identifier.primary 10.1016/0378-4754(95)00007-0 en
heal.identifier.secondary http://dx.doi.org/10.1016/0378-4754(95)00007-0 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract Neural networks or connectionist models are massively parallel interconnections of simple neurons that work as a collective system, can emulate human performance and provide high computation rates. On the other hand, fuzzy systems are capable to model uncertain or ambiguous situations that are so often encountered in real life. One way for implementing fuzzy systems is through utilizations of the expert system architecture. Recently, many attempts have been made to ""fuse"" fuzzy systems and neural nets in order to achieve better performance in reasoning and decision making processes. The systems that result from such a fusion are called neuro-fuzzy inference systems and possess combined features. The purpose of the present paper is to propose such a neuro-fuzzy system by extending and improving the system of Keller et al. (1992). The present system makes use of Hamacher's fuzzy intersection function and Sugeno's complement function. After a brief outline of the operation of the system its features are established with the aid of four theorems which are fully proved. The capabilities of the system are shown by a set of simulation results derived for the case of trapezoidal fuzzy sets. These results are shown to be better than the ones obtained with the original neuro-fuzzy system of Keller et al. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Mathematics and Computers in Simulation en
dc.identifier.doi 10.1016/0378-4754(95)00007-0 en
dc.identifier.isi ISI:A1996UR67100006 en
dc.identifier.volume 40 en
dc.identifier.issue 5-6 SPEC. ISS. en
dc.identifier.spage 565 en
dc.identifier.epage 576 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής