dc.contributor.author |
Mamalis, AG |
en |
dc.contributor.author |
Manolakos, DE |
en |
dc.contributor.author |
Demosthenous, GA |
en |
dc.contributor.author |
Ioannidis, MB |
en |
dc.date.accessioned |
2014-03-01T01:11:41Z |
|
dc.date.available |
2014-03-01T01:11:41Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0263-8231 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11779 |
|
dc.subject |
Composite Material |
en |
dc.subject |
Failure Mechanism |
en |
dc.subject |
Theoretical Analysis |
en |
dc.subject |
Theoretical Model |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Composite materials |
en |
dc.subject.other |
Energy absorption |
en |
dc.subject.other |
Failure analysis |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
Structural loads |
en |
dc.subject.other |
Tubes (components) |
en |
dc.subject.other |
Axial collapse |
en |
dc.subject.other |
Crushing loads |
en |
dc.subject.other |
Energy absorbing capacity |
en |
dc.subject.other |
Failure mechanisms |
en |
dc.subject.other |
Static axial compression |
en |
dc.subject.other |
Thin walled fibreglass composite tubes |
en |
dc.subject.other |
Composite structures |
en |
dc.title |
Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0263-8231(95)00042-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0263-8231(95)00042-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
Theoretical analysis of the failure mechanism of the stable mode of collapse of thin-walled fibreglass composite tubes under static axial compression, based on experimental observations and taking into account all possible energy absorbing mechanisms developed during the process, is reported. Crushing loads and the energy absorbed are theoretically predicted. The proposed theoretical model was experimentally verified for various composite materials and tube geometries and proved to be very efficient for theoretically predicting the energy absorbing capacity of the shell. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Thin-Walled Structures |
en |
dc.identifier.doi |
10.1016/0263-8231(95)00042-9 |
en |
dc.identifier.isi |
ISI:A1996TT79000003 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
335 |
en |
dc.identifier.epage |
352 |
en |