dc.contributor.author |
Antonopoulos, KA |
en |
dc.contributor.author |
Tzivanidis, C |
en |
dc.date.accessioned |
2014-03-01T01:11:42Z |
|
dc.date.available |
2014-03-01T01:11:42Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11785 |
|
dc.subject |
Analytic Solution |
en |
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Value Problem |
en |
dc.subject |
Heat Conduction |
en |
dc.subject |
Separation of Variables |
en |
dc.subject |
Thermal Properties |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Density (specific gravity) |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Heat convection |
en |
dc.subject.other |
Heat transfer coefficients |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Specific heat |
en |
dc.subject.other |
Thermal conductivity |
en |
dc.subject.other |
Thermal diffusion |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Orthogonal function expansion |
en |
dc.subject.other |
Variable separation method |
en |
dc.subject.other |
Heat conduction |
en |
dc.title |
Analytical solution of boundary value problems of heat conduction in composite regions with arbitrary convection boundary conditions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01410508 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01410508 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
An analytical solution is presented for nonhomogeneous, one-dimensional, transient heat conduction problems in composite regions, such as multilayer slabs, cylinders and spheres, with arbitrary convection boundary conditions on both outer surfaces. The method of solution is based on separation of variables and on orthogonal expansion of functions over multilayer regions. Similar analytical procedures are available in the literature for a variety of combinations of boundary conditions, but not including the ones considered here, although such cases are encountered in practice very often. The effect of layer thermal properties on density of eigenvalues and accuracy of solution is also examined. |
en |
heal.publisher |
SPRINGER-VERLAG WIEN |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01410508 |
en |
dc.identifier.isi |
ISI:A1996VK84400006 |
en |
dc.identifier.volume |
118 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
65 |
en |
dc.identifier.epage |
78 |
en |