dc.contributor.author |
Kaliakatsos, Ch |
en |
dc.contributor.author |
Pentaris, A |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.contributor.author |
Tsangaris, S |
en |
dc.date.accessioned |
2014-03-01T01:11:44Z |
|
dc.date.available |
2014-03-01T01:11:44Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
1069-8299 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11789 |
|
dc.subject |
Artificial compressibility methodology |
en |
dc.subject |
Navier-Stokes |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Channel flow |
en |
dc.subject.other |
Laminar flow |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
Shear stress |
en |
dc.subject.other |
Viscous flow |
en |
dc.subject.other |
Approximate factorization technique |
en |
dc.subject.other |
Artificial compressibility methodology |
en |
dc.subject.other |
Curvilinear non-orthogonal coordinates |
en |
dc.subject.other |
Velocity pressure formulation |
en |
dc.subject.other |
Compressible flow |
en |
dc.subject.other |
channels |
en |
dc.subject.other |
compressible fluid |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.title |
Application of an artificial compressibility methodology for the incompressible flow through a wavy channel |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1099-0887(199606)12:6<359::AID-CNM992>3.0.CO;2-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1099-0887(199606)12:6<359::AID-CNM992>3.0.CO;2-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The paper considers the problem of laminar incompressible viscous flow through a wavy channel. An artificial compressibility method using the approximate factorization technique is applied to solve the velocity-pressure formulation of the Navier-Stokes equations written in curvilinear non-orthogonal co-ordinates. The physical domain used was one wavelength of the channel in which appropriate periodicity conditions were applied in order to find a solution independent of entry effects. Flow separation was observed for high Re numbers and/or large wave amplitudes of the channel. The effect of inertia to the velocity profiles was observed, and pressure and shear stress were calculated along the length of the channel. These flows have great interest in industry and medicine such as for the extracorporeal membrane oxygenator. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
Communications in Numerical Methods in Engineering |
en |
dc.identifier.doi |
10.1002/(SICI)1099-0887(199606)12:6<359::AID-CNM992>3.0.CO;2-4 |
en |
dc.identifier.isi |
ISI:A1996UX75500005 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
359 |
en |
dc.identifier.epage |
369 |
en |