dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:11:45Z |
|
dc.date.available |
2014-03-01T01:11:45Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11794 |
|
dc.subject |
Asymptotic Behaviour |
en |
dc.subject |
Blow Up |
en |
dc.subject |
semilinear heat equation |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PARABOLIC EQUATIONS |
en |
dc.subject.other |
POSITIVE SOLUTIONS |
en |
dc.title |
Asymptotic behaviour and blow-up of some unbounded solutions for a semilinear heat equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S001309150002280X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S001309150002280X |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The initial-boundary value problem for the nonlinear heat equation u(t)=Delta u+lambda f(u) might possibly have global classical unbounded solutions, u*=u(x,t;u(0)*), for some ''critical'' initial data u(0)*. The asymptotic behaviour of such solutions is studied, when there exists a unique bounded steady state w(x;lambda) for some values of lambda. We find, for radial symmetric solutions, that u*(r,t)-->w(r) for any 0<r less than or equal to 1 but supu*(.,t)=u*(0,t)-->infinity, as t-->infinity. Furthermore, if (u) over cap(0)>u(0)*, where u(0)* is some such critical initial data, then (u) over cap=u(x,t;(u) over cap(0)*) blows up in finite time provided that f grows sufficiently fast. |
en |
heal.publisher |
OXFORD UNIV PRESS UNITED KINGDOM |
en |
heal.journalName |
Proceedings of the Edinburgh Mathematical Society |
en |
dc.identifier.doi |
10.1017/S001309150002280X |
en |
dc.identifier.isi |
ISI:A1996TY50600009 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
81 |
en |
dc.identifier.epage |
96 |
en |