HEAL DSpace

Asymptotic behaviour and blow-up of some unbounded solutions for a semilinear heat equation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzanetis, DE en
dc.date.accessioned 2014-03-01T01:11:45Z
dc.date.available 2014-03-01T01:11:45Z
dc.date.issued 1996 en
dc.identifier.issn 0013-0915 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11794
dc.subject Asymptotic Behaviour en
dc.subject Blow Up en
dc.subject semilinear heat equation en
dc.subject.classification Mathematics en
dc.subject.other PARABOLIC EQUATIONS en
dc.subject.other POSITIVE SOLUTIONS en
dc.title Asymptotic behaviour and blow-up of some unbounded solutions for a semilinear heat equation en
heal.type journalArticle en
heal.identifier.primary 10.1017/S001309150002280X en
heal.identifier.secondary http://dx.doi.org/10.1017/S001309150002280X en
heal.language English en
heal.publicationDate 1996 en
heal.abstract The initial-boundary value problem for the nonlinear heat equation u(t)=Delta u+lambda f(u) might possibly have global classical unbounded solutions, u*=u(x,t;u(0)*), for some ''critical'' initial data u(0)*. The asymptotic behaviour of such solutions is studied, when there exists a unique bounded steady state w(x;lambda) for some values of lambda. We find, for radial symmetric solutions, that u*(r,t)-->w(r) for any 0<r less than or equal to 1 but supu*(.,t)=u*(0,t)-->infinity, as t-->infinity. Furthermore, if (u) over cap(0)>u(0)*, where u(0)* is some such critical initial data, then (u) over cap=u(x,t;(u) over cap(0)*) blows up in finite time provided that f grows sufficiently fast. en
heal.publisher OXFORD UNIV PRESS UNITED KINGDOM en
heal.journalName Proceedings of the Edinburgh Mathematical Society en
dc.identifier.doi 10.1017/S001309150002280X en
dc.identifier.isi ISI:A1996TY50600009 en
dc.identifier.volume 39 en
dc.identifier.issue 1 en
dc.identifier.spage 81 en
dc.identifier.epage 96 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής