dc.contributor.author |
Giannakoglou, KC |
en |
dc.contributor.author |
Chaviaropoulos, P |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T01:11:45Z |
|
dc.date.available |
2014-03-01T01:11:45Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0965-9978 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11803 |
|
dc.subject |
Finite Difference |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Grid Generation |
en |
dc.subject |
Heat Transfer |
en |
dc.subject |
Laplace Equation |
en |
dc.subject |
Numerical Algorithm |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Unstructured Grid |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Computer aided design |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Finite difference method |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Surfaces |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Boundary fitted parametrization |
en |
dc.subject.other |
Finite element discretization technique |
en |
dc.subject.other |
Algorithms |
en |
dc.title |
Boundary-fitted parametrization of unstructured grids on arbitrary surfaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0965-9978(96)00009-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0965-9978(96)00009-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
This paper presents a numerical algorithm for handling arbitrary surfaces which are described through an unstructured set of grid points. Surface unstructured grids can be produced using any CAD software and the present method allows its transformation into high-quality structured grids which are appropriate for flow and heat-transfer calculations, by means of finite-difference techniques. The connectivity and the coordinates of the initial surface nodes are the data for the calculation. The structured grid is defined by introducing a convenient set of two parametric coordinates that satisfy the surface Laplace equation. These equations are solved in the unstructured surface grid using the finite element technique, and provide the parametric values over the primitive unstructured grid nodes. The curvilinear coordinate lines, which coincide with the structured grid lines, are defined by searching for the solution contours inside the surface patch. The quality of the so-calculated grid is further improved via a structured-to-structured grid transformation method which improves grid characteristics, such as orthogonality, smoothness and user-defined grid-lines clustering. The proposed method has been successfully applied in several surface grid generation problems of industrial interest, some of them being illustrated herein. Copyright © 1996 Civil-Comp Limited and Elsevier Science Limited. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Advances in Engineering Software |
en |
dc.identifier.doi |
10.1016/0965-9978(96)00009-9 |
en |
dc.identifier.isi |
ISI:A1996VH72400006 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
41 |
en |
dc.identifier.epage |
49 |
en |