dc.contributor.author |
Pigounakis, KG |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T01:11:48Z |
|
dc.date.available |
2014-03-01T01:11:48Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0010-4485 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11820 |
|
dc.subject |
B-spline curves |
en |
dc.subject |
Convexity |
en |
dc.subject |
Cubic curves |
en |
dc.subject |
Curvature-slope discontinuity |
en |
dc.subject |
Fairness |
en |
dc.subject |
Knot-insertion |
en |
dc.subject |
Knot-removal |
en |
dc.subject |
Tolerances |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Curve fitting |
en |
dc.subject.other |
Fits and tolerances |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
B spline curves |
en |
dc.subject.other |
Convexity |
en |
dc.subject.other |
Curvature slope discontinuity |
en |
dc.subject.other |
End constraints |
en |
dc.subject.other |
Fairing |
en |
dc.subject.other |
Iterative knot removal knot reinsertion technique |
en |
dc.subject.other |
Computer aided design |
en |
dc.title |
Convexity-preserving fairing |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0010-4485(96)00024-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0010-4485(96)00024-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
This paper develops a two-stage automatic algorithm for fairing C-2-continuous cubic parametric B-splines under convexity, tolerance and end constraints. The first stage is a global procedure, yielding a C-2 cubic B-spline which satisfies the local-convexity, local-tolerance and end constraints imposed by the designer. The second stage is a local fine-fairing procedure employing an iterative knot-removal knot-reinsertion technique, which adopts the curvature-slope discontinuity as the fairness measure of a C-2 spline. This procedure preserves the convexity and end properties of the output of the first stage and, moreover, it embodies a global-tolerance constraint. The performance of the algorithm is discussed for four data sets. Copyright (C) 1996 Elsevier Science Ltd |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
CAD Computer Aided Design |
en |
dc.identifier.doi |
10.1016/0010-4485(96)00024-3 |
en |
dc.identifier.isi |
ISI:A1996VP60100006 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
981 |
en |
dc.identifier.epage |
994 |
en |