HEAL DSpace

Cumulant-based identification of noisy closed loop systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Delopoulos, A en
dc.contributor.author Giannakis, GB en
dc.date.accessioned 2014-03-01T01:11:50Z
dc.date.available 2014-03-01T01:11:50Z
dc.date.issued 1996 en
dc.identifier.issn 0890-6327 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11828
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0030105027&partnerID=40&md5=ea1f36ab95101b3fddc9c93fa3fde5d0 en
dc.subject Closed loop systems en
dc.subject Parameter estimation en
dc.subject Recursive estimation en
dc.subject Statistics (cumulants) en
dc.subject System identification en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Computer simulation en
dc.subject.other Identification (control systems) en
dc.subject.other Mathematical models en
dc.subject.other Parameter estimation en
dc.subject.other Performance en
dc.subject.other Recursive functions en
dc.subject.other Signal to noise ratio en
dc.subject.other Spurious signal noise en
dc.subject.other Statistical methods en
dc.subject.other Additive noise en
dc.subject.other Cumulants en
dc.subject.other Linear equations en
dc.subject.other Mean squared error en
dc.subject.other Closed loop control systems en
dc.title Cumulant-based identification of noisy closed loop systems en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1996 en
heal.abstract Conventional parameter estimation approaches fail to identify linear systems operating in closed loop when both input and output measurements are contaminated by additive noise of unknown (cross-)spectral characteristics. However, even in the absence of measurement noise, parameter estimation is involved owing to the additive system noise entering the loop. The present work introduces a novel criterion which is theoretically insensitive to a class of disturbances and yields the same parameter estimates that one obtains using mean squared error (MSE) minimization in the absence of noise. A strongly convergent sample-based approximation of the proposed criterion is introduced for consistent parameter estimation in practice. It is also shown that in the common case of ARMA modelling the resulting parameter estimates coincide with those obtained from a set of linear equations which can be solved using a time-recursive algorithm. Simulation results are presented to verify the performance of the proposed schemes in low-signal-to-noise-ratio environments. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal of Adaptive Control and Signal Processing en
dc.identifier.isi ISI:A1996UD00700011 en
dc.identifier.volume 10 en
dc.identifier.issue 2 en
dc.identifier.spage 303 en
dc.identifier.epage 317 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής