dc.contributor.author |
Hizanidis, K |
en |
dc.contributor.author |
Frantzeskakis, DJ |
en |
dc.contributor.author |
Polymilis, C |
en |
dc.date.accessioned |
2014-03-01T01:11:56Z |
|
dc.date.available |
2014-03-01T01:11:56Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0305-4470 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11878 |
|
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
ZERO-DISPERSION POINT |
en |
dc.subject.other |
OPTICAL FIBERS |
en |
dc.subject.other |
FEMTOSECOND SOLITONS |
en |
dc.subject.other |
PULSE-PROPAGATION |
en |
dc.subject.other |
DARK-SOLITON |
en |
dc.subject.other |
DYNAMICS |
en |
dc.subject.other |
INSTABILITY |
en |
dc.subject.other |
MODULATION |
en |
dc.title |
Exact travelling wave solutions for a generalized nonlinear Schrödinger equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0305-4470/29/23/027 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0305-4470/29/23/027 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
A wide class of exact travelling wave solutions of a generalized nonlinear Schrödinger equation (GNLS) is obtained and analysed in detail. This class of solutions incorporates bright and dark solitary waves, periodic waves, unbounded waves and other solitary waves as asymptotic limits of the periodic or unbounded modes. The method of analysis adopted is based on reducing the GNLS to an ordinary differential equation and studying the phase plane of the resulting dynamical system. Application of the obtained results to the problem of propagation of femtosecond duration pulses in nonlinear optical fibres is also discussed. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Journal of Physics A: Mathematical and General |
en |
dc.identifier.doi |
10.1088/0305-4470/29/23/027 |
en |
dc.identifier.isi |
ISI:A1996VZ70900027 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
23 |
en |
dc.identifier.spage |
7687 |
en |
dc.identifier.epage |
7703 |
en |