dc.contributor.author |
Koussiouris, TG |
en |
dc.contributor.author |
Tzierakis, KG |
en |
dc.date.accessioned |
2014-03-01T01:11:58Z |
|
dc.date.available |
2014-03-01T01:11:58Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0005-1098 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11890 |
|
dc.subject |
Decoupling |
en |
dc.subject |
Disturbance rejection |
en |
dc.subject |
Linear systems |
en |
dc.subject |
Stabilization |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Closed loop control systems |
en |
dc.subject.other |
Controllability |
en |
dc.subject.other |
Feedback control |
en |
dc.subject.other |
Frequency domain analysis |
en |
dc.subject.other |
Linear control systems |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Poles and zeros |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
State space methods |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Decoupling |
en |
dc.subject.other |
Disturbance rejection |
en |
dc.subject.other |
Line time invariant system |
en |
dc.subject.other |
Pole placement |
en |
dc.subject.other |
Polynomial matrix approach |
en |
dc.subject.other |
Control theory |
en |
dc.title |
Frequency-domain conditions for disturbance rejection and decoupling with stability or pole placement |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0005-1098(96)85552-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0005-1098(96)85552-X |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The problem of disturbance rejection and disturbance rejection while decoupling with stability or pole placement is studied using a polynomial matrix approach. Necessary and sufficient conditions for the solvability of the problem of disturbance rejection as well as for the problem of disturbance rejection with input-output decoupling are derived. A number of poles of the closed-loop system are proved to be fixed for both of the above problems, and a procedure for placing all the remaining poles of the closed-loop system is presented. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Automatica |
en |
dc.identifier.doi |
10.1016/0005-1098(96)85552-X |
en |
dc.identifier.isi |
ISI:A1996TT38300008 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
229 |
en |
dc.identifier.epage |
234 |
en |