HEAL DSpace

Further numerical aspects of the ERES algorithm for the computation of the greatest common divisor of polynomials and comparison with other existing methodologies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitrouli, M en
dc.contributor.author Karcanias, N en
dc.contributor.author Koukouvinos, C en
dc.date.accessioned 2014-03-01T01:11:58Z
dc.date.available 2014-03-01T01:11:58Z
dc.date.issued 1996 en
dc.identifier.issn 0315-3681 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11892
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0030300318&partnerID=40&md5=6430ccec5c10c620e747b0a8e59f0ad7 en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Statistics & Probability en
dc.title Further numerical aspects of the ERES algorithm for the computation of the greatest common divisor of polynomials and comparison with other existing methodologies en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1996 en
heal.abstract This paper presents the implementation of the ERES numerical method for the computation of the greatest common divisor (GCD) of several polynomials. The ERES algorithm performs row transformations and shifting on a matrix, formed directly from the coefficients of the given polynomials and determines a vector containing the coefficients of the required GCD. A detailed description of the implementation of the algorithm is presented and analytical proofs of its stability are also developed. A comparison of ERES with other iterative matrix-based methods is performed and various numerical results are described. en
heal.publisher UTIL MATH PUBL INC en
heal.journalName Utilitas Mathematica en
dc.identifier.isi ISI:A1996WB81300005 en
dc.identifier.volume 50 en
dc.identifier.spage 65 en
dc.identifier.epage 84 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής