HEAL DSpace

High capacity associative memory based on the random neural network model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:11:59Z
dc.date.available 2014-03-01T01:11:59Z
dc.date.issued 1996 en
dc.identifier.issn 0218-0014 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11904
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0342832251&partnerID=40&md5=e5312b31a738638578016808e70e7742 en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/journals/ijprai/ijprai10.html#LikasS96 en
dc.subject Associative memory en
dc.subject Hebbian learning en
dc.subject Neural computation en
dc.subject Random neural network en
dc.subject Spectral learning en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other THRESHOLD FUNCTIONS en
dc.subject.other QUEUING-NETWORKS en
dc.subject.other CUSTOMERS en
dc.title High capacity associative memory based on the random neural network model en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1996 en
heal.abstract In this paper the Bipolar Random Network is described, which constitutes an extension of the Random Neural Network model and exhibits autoassociative memory capabilities. This model is characterized by the existence of positive and negative nodes and symmetrical behavior of positive and negative signals circulating in the network. The network's ability of acting as autoassociative memory is examined and several techniques are developed concerning storage and reconstruction of patterns. These approaches are either based on properties of the network or constitute adaptations of existing neural network techniques. The performance of the network under the proposed schemes has been investigated through experiments showing very good storage and reconstruction capabilities. Moreover, the scheme exhibiting the best behavior seems to outperform other well-known associative neural network models, achieving capacities that exceed 0.5n where n is the size of the network. en
heal.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en
heal.journalName International Journal of Pattern Recognition and Artificial Intelligence en
dc.identifier.isi ISI:A1996WW14300003 en
dc.identifier.volume 10 en
dc.identifier.issue 8 en
dc.identifier.spage 919 en
dc.identifier.epage 937 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής