dc.contributor.author |
Tychopoulos, E |
en |
dc.date.accessioned |
2014-03-01T01:12:02Z |
|
dc.date.available |
2014-03-01T01:12:02Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0021-9045 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11931 |
|
dc.subject.classification |
Mathematics |
en |
dc.title |
Lorentz spaces and lie groups |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jath.1996.0020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jath.1996.0020 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
This paper is motivated by the behavior of the heat diffusion kernel p(t)(x) on a general unimodular Lie group. Indeed. contrary to what happens in R(n), the P-t(x) on a general Lie group is behaving like t(-delta(t)/2) for two possibly distinct integers delta(t), one for t tending to 0 and another for t tending to infinity, namely d and D. This forces us to consider a natural generalization of Lorentz spaces with different indices at ''zero'' and at ''infinity.'' (C) 1996 Academic Press, Inc. |
en |
heal.publisher |
ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS |
en |
heal.journalName |
Journal of Approximation Theory |
en |
dc.identifier.doi |
10.1006/jath.1996.0020 |
en |
dc.identifier.isi |
ISI:A1996TZ73500003 |
en |
dc.identifier.volume |
84 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
274 |
en |
dc.identifier.epage |
289 |
en |