dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:12:08Z |
|
dc.date.available |
2014-03-01T01:12:08Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0022-460X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11962 |
|
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Load testing |
en |
dc.subject.other |
Lyapunov methods |
en |
dc.subject.other |
Models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Global stability |
en |
dc.subject.other |
Liapunov direct method |
en |
dc.subject.other |
Nonlinear dynamic buckling |
en |
dc.subject.other |
Nonlinear equilibrium path |
en |
dc.subject.other |
One degree of freedom dissipative nondissipative model |
en |
dc.subject.other |
Buckling |
en |
dc.title |
Non-linear dynamic buckling of a simple model via the Liapunov direct method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jsvi.1996.0334 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jsvi.1996.0334 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The non-linear dynamic response of a simple one-degree-of-freedom dissipative/nondissipative model under the more general case of partial follower loading is considered. The study is confined to imperfection sensitive systems which lose their static stability through a limit point. The analysis proceeds first by employing the inflection point criterion for dynamic buckling which is subsequently confirmed via the Liapunov direct method for global stability (instability). Attention is focused on determining the level of the dynamic buckling load above which the associated equilibria on the fundamental equilibrium path are globally unstable, although they are locally asymptotically stable. (C) 1996 Academic Press Limited |
en |
heal.publisher |
ACADEMIC PRESS LTD |
en |
heal.journalName |
Journal of Sound and Vibration |
en |
dc.identifier.doi |
10.1006/jsvi.1996.0334 |
en |
dc.identifier.isi |
ISI:A1996UU95600011 |
en |
dc.identifier.volume |
193 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1091 |
en |
dc.identifier.epage |
1097 |
en |