HEAL DSpace

Numerical performance of the matrix pencil algorithm computing the greatest common divisor of polynomials and comparison with other matrix-based methodologies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitrouli, M en
dc.contributor.author Karcanias, N en
dc.contributor.author Koukouvinos, C en
dc.date.accessioned 2014-03-01T01:12:08Z
dc.date.available 2014-03-01T01:12:08Z
dc.date.issued 1996 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11966
dc.subject Greatest common divisor of polynomials en
dc.subject Linear systems en
dc.subject Matrix pencils en
dc.subject Numerical algorithms en
dc.subject.classification Mathematics, Applied en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Matrix algebra en
dc.subject.other Vectors en
dc.subject.other Greatest common divisor (GCD) en
dc.subject.other Matrix pencil algorithm en
dc.subject.other Output decoupling zero polynomial en
dc.subject.other Software package MATLAB en
dc.subject.other System theoretic properties en
dc.subject.other Polynomials en
dc.title Numerical performance of the matrix pencil algorithm computing the greatest common divisor of polynomials and comparison with other matrix-based methodologies en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0377-0427(96)00092-1 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0377-0427(96)00092-1 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract This paper presents a new numerical algorithm for the computation of the greatest common divisor (GCD) of several polynomials, based on system-theoretic properties. The specific algorithm, characterizes the GCD as the output decoupling zero polynomial of an appropriate linear system associated with the given polynomial set. The computation of the GCD is thus reduced to specifying a nonzero entry of a vector forming the compound matrix of a matrix pencil directly produced from the associated linear system. A detailed description of the implementation of the algorithm is presented and analytical proofs of its stability are also developed. The MATLAB code of the algorithm is also described in the appendix. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.doi 10.1016/S0377-0427(96)00092-1 en
dc.identifier.isi ISI:A1996VZ45400006 en
dc.identifier.volume 76 en
dc.identifier.issue 1-2 en
dc.identifier.spage 89 en
dc.identifier.epage 112 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής