dc.contributor.author |
Pentaris, A |
en |
dc.contributor.author |
Tsangaris, S |
en |
dc.date.accessioned |
2014-03-01T01:12:08Z |
|
dc.date.available |
2014-03-01T01:12:08Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11967 |
|
dc.subject |
Approximate factorization technique |
en |
dc.subject |
Laminar flow |
en |
dc.subject |
Navier-Stokes equations |
en |
dc.subject |
Projection method |
en |
dc.subject |
Turbulent flow |
en |
dc.subject |
Unsteady flow |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Laminar flow |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Turbulent flow |
en |
dc.subject.other |
Unsteady flow |
en |
dc.subject.other |
Approximate factorization technique |
en |
dc.subject.other |
Implicit projection method |
en |
dc.subject.other |
Viscous flow |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
simulation-numerical |
en |
dc.subject.other |
viscous flow |
en |
dc.title |
Numerical simulation of unsteady viscous flows using an implicit projection method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1097-0363(19961115)23:9<897::AID-FLD461>3.0.CO;2-# |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1097-0363(19961115)23:9<897::AID-FLD461>3.0.CO;2-# |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
In this paper an implicit projection method for the solution of the two-dimensional, time-dependent, incompressible Navier-Stokes equations is presented. The basic principle of this method is that the evaluation of the time evolution is split into intermediate steps. The computational method is based on the approximate factorization technique. The coupled approach is used to link the equations of motion and the turbulence model equations. The standard k-epsilon turbulence model is used. The current methodology, which has been tested extensively for steady problems, is now applied for the numerical simulation of unsteady flows. Several cases were tested, such as plane or axisymmetric channels, a backward-facing step, a square cavity and an axisymmetric stenosis. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/(SICI)1097-0363(19961115)23:9<897::AID-FLD461>3.0.CO;2-# |
en |
dc.identifier.isi |
ISI:A1996VT23400003 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
897 |
en |
dc.identifier.epage |
921 |
en |