dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Sophianopoulos, DS |
en |
dc.date.accessioned |
2014-03-01T01:12:09Z |
|
dc.date.available |
2014-03-01T01:12:09Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0022-460X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11973 |
|
dc.subject |
Autonomic System |
en |
dc.subject |
Discrete System |
en |
dc.subject |
Dissipative System |
en |
dc.subject |
Dynamic Response |
en |
dc.subject |
Lower and Upper Bound |
en |
dc.subject |
Non-linear Model |
en |
dc.subject |
Ordinary Differential Equation |
en |
dc.subject |
Multi Degree of Freedom |
en |
dc.subject |
Single Degree of Freedom |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Loads (forces) |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Complementary equilibrium path |
en |
dc.subject.other |
Dissipative non dissipative discrete systems |
en |
dc.subject.other |
Dynamic buckling |
en |
dc.subject.other |
Dynamic global response |
en |
dc.subject.other |
Energy criteria |
en |
dc.subject.other |
Non linear autonomous ordinary differential equations |
en |
dc.subject.other |
Single degree of freedom |
en |
dc.subject.other |
Unbounded motion |
en |
dc.subject.other |
Discrete time control systems |
en |
dc.title |
On the dynamic buckling mechanism of single-degree-of-freedom dissipative/non-dissipative autonomous systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jsvi.1996.0306 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jsvi.1996.0306 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The dynamic global response of single-degree-of-freedom dissipative/non-dissipative gradient discrete systems described by non-linear autonomous ordinary differential equations is thoroughly studied by using energy criteria. Emphasis is given to the study of the dynamic buckling mechanism (always occurring via a saddle) and the associated long term response of the escaped motion. To this end, the dynamic responses of two non-linear models (with a variety of equilibrium configurations) subjected to a suddenly applied load of infinite duration are examined in detail. It is found that dynamic buckling may lead sometimes to an unbounded motion regardless of the existence of another remote stable equilibrium position, while in other cases the latter position may act as point attractor capturing the motion. Moreover, it is established that the stable equilibrium positions of a complementary equilibrium path do not act as point attractors, as may occur in case of multi-degree-of-freedom systems. Finally, exact (for non-dissipative) and very good lower and upper bounds (for dissipative) systems are presented. (C) 1996 Academic Press Limited |
en |
heal.publisher |
ACADEMIC PRESS LTD |
en |
heal.journalName |
Journal of Sound and Vibration |
en |
dc.identifier.doi |
10.1006/jsvi.1996.0306 |
en |
dc.identifier.isi |
ISI:A1996UQ46800005 |
en |
dc.identifier.volume |
193 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
645 |
en |
dc.identifier.epage |
668 |
en |