dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:12:09Z |
|
dc.date.available |
2014-03-01T01:12:09Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11977 |
|
dc.subject |
Autonomous |
en |
dc.subject |
Dissipative |
en |
dc.subject |
Dynamic buckling |
en |
dc.subject |
Nonlinear |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Lagrange multipliers |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Phase space methods |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Discrete structural systems |
en |
dc.subject.other |
Impact loading |
en |
dc.subject.other |
Nonlinear dynamic buckling |
en |
dc.subject.other |
Potential energy |
en |
dc.subject.other |
Buckling |
en |
dc.title |
On the nonlinear dynamic buckling mechanism of autonomous dissipative/nondissipative discrete structural systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00803674 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00803674 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
Nonlinear dynamic buckling of nonlinearly elastic dissipative/nondissipative multi-mass systems, mainly under step load of infinite duration, is studied in detail. These systems, under the same loading applied statically, experience a limit point instability. The analysis can be readily extended to the case of dynamic buckling under impact loading. Energy, topological and geometrical aspects for the total potential energy V, which is constrained to lie in a region of phase-space where V less than or equal to 0, allow conclusions to be drawn directly regarding dynamic buckling. Criteria leading to very good, approximate and lower/upper bound dynamic buckling estimates are readily established without solving the highly nonlinear set of equations of motion. The theory is illustrated with several analyses of a two-degree-of-freedom model. |
en |
heal.publisher |
SPRINGER VERLAG |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/BF00803674 |
en |
dc.identifier.isi |
ISI:A1996UX30100003 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
395 |
en |
dc.identifier.epage |
408 |
en |