HEAL DSpace

Optimal time and efficient space free scheduling for nested loops

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koziris, Nectarios en
dc.contributor.author Papakonstantinou, George en
dc.contributor.author Tsanakas, Panayotis en
dc.date.accessioned 2014-03-01T01:12:10Z
dc.date.available 2014-03-01T01:12:10Z
dc.date.issued 1996 en
dc.identifier.issn 0010-4620 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11987
dc.subject Nested Loops en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Computer software en
dc.subject.other Graph theory en
dc.subject.other Heuristic programming en
dc.subject.other Multiprocessing systems en
dc.subject.other PERT en
dc.subject.other Program compilers en
dc.subject.other Program processors en
dc.subject.other Scheduling en
dc.subject.other Nested loops en
dc.subject.other Sequential computer programs en
dc.subject.other Shared memory multiprocessor systems en
dc.subject.other Task graph scheduling techniques en
dc.subject.other Recursive functions en
dc.title Optimal time and efficient space free scheduling for nested loops en
heal.type journalArticle en
heal.identifier.primary 10.1093/comjnl/39.5.439 en
heal.identifier.secondary http://dx.doi.org/10.1093/comjnl/39.5.439 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract The most important issue when parallelizing sequential programs is the efficient assignment of computations into different processing elements. The most extensive, in terms of time execution, part of a program is the nested loops. Too many approaches have been devoted in parallelizing nested loops, and assigning the concurrent partitions of such a loop into different processors. In the past, all methods have been focused upon linear schedules produced by manipulating the reduced dependence graph, which in some cases achieve near optimal solutions. This paper presents a new method of free scheduling loop computations into time, based on task graph scheduling techniques. It will be shown that this schedule is optimal in terms of time, outperforming all linear schedules. Furthermore, in terms of total number of processors, the presented method includes a heuristic refinement of the free schedule which `shuffles' computations into time, without loss of the optimal time performance, to augment the mean processor utilization. In all cases, the proposed method uses less number of processors, while preserving the optimal total execution time. The `shuffling' of computations is based on graph theory approaches, and uses PERT problem techniques. Such scheduling is convenient for parallelizing tools (such as compilers), but has practical interest for shared memory multiprocessor systems, where the communication delay imposed by such non-regular scheduling is of no interest. en
heal.publisher Oxford Univ Press, Oxford, United Kingdom en
heal.journalName Computer Journal en
dc.identifier.doi 10.1093/comjnl/39.5.439 en
dc.identifier.isi ISI:A1996VW45000008 en
dc.identifier.volume 39 en
dc.identifier.issue 5 en
dc.identifier.spage 439 en
dc.identifier.epage 448 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής