dc.contributor.author |
Antonopoulos, KA |
en |
dc.contributor.author |
Rogdakis, ED |
en |
dc.date.accessioned |
2014-03-01T01:12:11Z |
|
dc.date.available |
2014-03-01T01:12:11Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
1359-4311 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11996 |
|
dc.subject |
Absorption cooling |
en |
dc.subject |
Absorption heat pump |
en |
dc.subject |
Ammonia-lithium nitrate |
en |
dc.subject |
Ammonia-sodium thiocyanate |
en |
dc.subject |
Athens solar radiation |
en |
dc.subject |
Solar cooling |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Absorption |
en |
dc.subject.other |
Ammonia |
en |
dc.subject.other |
Climatology |
en |
dc.subject.other |
Cooling systems |
en |
dc.subject.other |
Heat pump systems |
en |
dc.subject.other |
Lithium compounds |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Sodium compounds |
en |
dc.subject.other |
Solar radiation |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Absorption cooling |
en |
dc.subject.other |
Absorption heat pump |
en |
dc.subject.other |
Ammonia-lithium nitrate |
en |
dc.subject.other |
Ammonia-sodium thiocyanate |
en |
dc.subject.other |
Athens solar radiation |
en |
dc.subject.other |
Cooling power |
en |
dc.subject.other |
Heat gain factor |
en |
dc.subject.other |
Solar cooling |
en |
dc.subject.other |
Summer |
en |
dc.subject.other |
Thermal power |
en |
dc.subject.other |
Solar equipment |
en |
dc.title |
Performance of solar-driven ammonia-lithium nitrate and ammonia-sodium thiocyanate absorption systems operating as coolers or heat pumps in Athens |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/1359-4311(95)00046-G |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/1359-4311(95)00046-G |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The hour-by-hour performance of solar-driven NH3-LiNO3 and NH3-NaSCN absorption systems operating as coolers or heat pumps in the Athens area is predicted, using 20 yr of local climatological data. The exact thermodynamic cycles are represented by substitution of the composite thermodynamic processes (absorption, generation, heat exchange), which involve interactions of two or three streams by thermodynamically equivalent one-stream changes. Under the assumptions made, it becomes possible to develop two groups of correlations. The first expresses the characteristics and the performance of the absorption systems in terms of the ambient temperature only, while in the second group the behaviour of the systems is expressed in terms of the hour of the day for each day of a typical year in Athens. The main conclusions for operation in the Athens area are: (a) For cooling purposes (summer) the maximum theoretical values of the coefficient of performance and of the cooling power are 90% and 355 W/m(2), respectively, while for heating purposes (winter) the maximum theoretical values of the heat gain factor and of the useful thermal power are 210% and 344 W/m(2), respectively. (b) For heating purposes (winter), the NH3-LiNO3 system is superior to the NH3-NaSCN one, because it provides a higher heat-gain factor and useful thermal power. (9) For cooling during summer, the choice depends on the special requirements of each application, because the NH3-LiNO3 system provides higher cooling power, while the NH3-NaSCN system achieves a higher coefficient of performance. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Applied Thermal Engineering |
en |
dc.identifier.doi |
10.1016/1359-4311(95)00046-G |
en |
dc.identifier.isi |
ISI:A1996TT07000003 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
127 |
en |
dc.identifier.epage |
147 |
en |