dc.contributor.author |
Christakopoulos, P |
en |
dc.contributor.author |
Nerinckx, W |
en |
dc.contributor.author |
Kekos, D |
en |
dc.contributor.author |
Macris, B |
en |
dc.contributor.author |
Claeyssens, M |
en |
dc.date.accessioned |
2014-03-01T01:12:13Z |
|
dc.date.available |
2014-03-01T01:12:13Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0168-1656 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12011 |
|
dc.subject |
Enzyme purification |
en |
dc.subject |
Fusarium oxysporum |
en |
dc.subject |
Partial amino acid sequence |
en |
dc.subject |
Xylanase |
en |
dc.subject.classification |
Biotechnology & Applied Microbiology |
en |
dc.subject.other |
Cellulose |
en |
dc.subject.other |
Chemical bonds |
en |
dc.subject.other |
Enzyme kinetics |
en |
dc.subject.other |
Enzymes |
en |
dc.subject.other |
High pressure liquid chromatography |
en |
dc.subject.other |
Hydrolysis |
en |
dc.subject.other |
Ion exchange |
en |
dc.subject.other |
Molecular weight |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
Purification |
en |
dc.subject.other |
Reaction kinetics |
en |
dc.subject.other |
Thermodynamic stability |
en |
dc.subject.other |
Isoelectric points |
en |
dc.subject.other |
Partial amino acid sequence |
en |
dc.subject.other |
Xylanase |
en |
dc.subject.other |
Biotechnology |
en |
dc.subject.other |
alkaline xylanase |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
xylan endo 1,3 beta xylosidase |
en |
dc.subject.other |
amino acid sequence |
en |
dc.subject.other |
article |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
enzyme analysis |
en |
dc.subject.other |
enzyme purification |
en |
dc.subject.other |
fusarium oxysporum |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
Amino Acid Sequence |
en |
dc.subject.other |
Biotechnology |
en |
dc.subject.other |
Chromatography, Gel |
en |
dc.subject.other |
Chromatography, Ion Exchange |
en |
dc.subject.other |
Enzyme Stability |
en |
dc.subject.other |
Fusarium |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Isoelectric Point |
en |
dc.subject.other |
Molecular Sequence Data |
en |
dc.subject.other |
Molecular Weight |
en |
dc.subject.other |
Sequence Homology, Amino Acid |
en |
dc.subject.other |
Substrate Specificity |
en |
dc.subject.other |
Xylan Endo-1,3-beta-Xylosidase |
en |
dc.subject.other |
Xylosidases |
en |
dc.subject.other |
Fusarium |
en |
dc.subject.other |
Fusarium oxysporum |
en |
dc.title |
Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0168-1656(96)01619-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0168-1656(96)01619-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
Two low molecular mass endo-1,4-β-D-xylanases from Fusarium oxysporum were purified to homogeneity by gel-filtration and ion-exchange chromatography. They exhibit molecular masses of 20.8 (xylanase I) and 23.5 (xylanase II) kDa, and isoelectric points of 9.5 and 8.45-8.70, respectively. Both xylanases display remarkable pH (9.0) stability. At 40 to 55°C xylanase II is more thermostable than xylanase I but less active on xylan. In contrast to xylanase I, xylanase II is able to hydrolyze 1-O-4-methylumbelliferyl-(β-D-glucopyranosyl)-β-D-xylopyranoside (muxg). Neither of these enzymes hydrolyze xylotriose. They bind on crystalline cellulose but not on insoluble xylan. Analysis of reaction mixtures by high pressure liquid chromatography revealed that both enzymes cleave preferentially the internal glycosidic bonds of xylopentaose and oat spelts xylan. Thus the purified enzymes appeared to be true endo-β-1,4-xylanases. The amino terminal sequences of xylanases I and II show no homology. Xylanase I shows high similarity with alkaline low molecular mass xylanases of family G/11.Two low molecular mass endo-1,4-β-D-xylanases from Fusarium oxysporum were purified to homogeneity by gel-filtration and ion-exchange chromatography. They exhibit molecular masses of 20.8 (xylanase I) and 23.5 (xylanase II) kDa, and isoelectric points of 9.5 and 8.45-8.70, respectively. Both xylanases display remarkable pH (9.0) stability. At 40 to 55 °C xylanase II is more thermostable than xylanase I but less active on xylan. In contrast to xylanase I, xylanase II is able to hydrolyze 1-O-4-methylumbelliferyl-(β-D-glucopyranosyl)-β-D-xylopyranoside (muxg). Neither of these enzymes hydrolyze xylotriose. They bind on crystalline cellulose but not on insoluble xylan. Analysis of reaction mixtures by high pressure liquid chromatography revealed that both enzymes cleave preferentially the internal glycosidic bonds of xylopentaose and oat spelts xylan. Thus the purified enzymes appeared to be true endo-β-1,4-xylanases. The amino terminal sequences of xylanases I and II show no homology. Xylanase I shows high similarity with alkaline low molecular mass xylanases of family G/11. |
en |
heal.publisher |
Elsevier Science B.V., Amsterdam, Netherlands |
en |
heal.journalName |
Journal of Biotechnology |
en |
dc.identifier.doi |
10.1016/0168-1656(96)01619-7 |
en |
dc.identifier.isi |
ISI:A1996VU83500010 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
181 |
en |
dc.identifier.epage |
189 |
en |