dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:12:13Z |
|
dc.date.available |
2014-03-01T01:12:13Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12012 |
|
dc.subject |
Basin of Attraction |
en |
dc.subject |
Branch Point |
en |
dc.subject |
Degree of Freedom |
en |
dc.subject |
Dissipative Structure |
en |
dc.subject |
Dissipative System |
en |
dc.subject |
Equilibrium Point |
en |
dc.subject |
Global Bifurcation |
en |
dc.subject |
Initial Value Problem |
en |
dc.subject |
Non-linear Dynamics |
en |
dc.subject |
Numerical Simulation |
en |
dc.subject |
Qualitative Analysis |
en |
dc.subject |
Lower Bound |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Loads (forces) |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Structures (built objects) |
en |
dc.subject.other |
Autonomous dissipative systems |
en |
dc.subject.other |
Equilibrium path |
en |
dc.subject.other |
Mass distribution |
en |
dc.subject.other |
Material non linearities |
en |
dc.subject.other |
Qualitative criteria |
en |
dc.subject.other |
Total energy equation |
en |
dc.subject.other |
Dynamic response |
en |
dc.title |
Qualitative criteria in non-linear dynamic buckling and stability of autonomous dissipative systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0020-7462(97)87164-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0020-7462(97)87164-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
A general qualitative approach for dynamic buckling and stability of autonomous dissipative structural systems is comprehensively presented. Attention is focused on systems which under the same statically applied loading exhibit a limit point instability or an unstable branching point instability with a non-linear fundamental path. Using the total energy equation, the theory of point and periodic attractors of the basin of attraction of a stable equilibrium point, of local and global bifurcations, of the inset and outset manifolds of a saddle and of the geometry of the channel of motion, the stability of the fundamental equilibrium path and the mechanism of dynamic buckling are thoroughly discussed. This allows us to establish useful qualitative criteria leading to exact, approximate and upper/lower bound buckling estimates without integrating the highly non-linear initial-value problem. The individual and coupling effect of geometric and material non-linearities of damping and mass distribution on the dynamic buckling load are also examined. A comparison of the results of the above qualitative analysis with those obtained via numerical simulation is performed on several two- and three-degree-of-freedom models of engineering importance. Copyright (C) 1996 Published by Elsevier Science Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/S0020-7462(97)87164-8 |
en |
dc.identifier.isi |
ISI:A1996WD72400008 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
6 SPEC. ISS. |
en |
dc.identifier.spage |
887 |
en |
dc.identifier.epage |
906 |
en |