HEAL DSpace

Simple disaggregation by accurate adjusting procedures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.contributor.author Manetas, A en
dc.date.accessioned 2014-03-01T01:12:16Z
dc.date.available 2014-03-01T01:12:16Z
dc.date.issued 1996 en
dc.identifier.issn 0043-1397 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12043
dc.subject Model Performance en
dc.subject Probability Distribution en
dc.subject Stochastic Model en
dc.subject Stochastic Simulation en
dc.subject.classification Environmental Sciences en
dc.subject.classification Limnology en
dc.subject.classification Water Resources en
dc.subject.other rain en
dc.subject.other runoff en
dc.subject.other model en
dc.subject.other probability en
dc.subject.other sampling en
dc.subject.other simulation en
dc.subject.other statistics en
dc.subject.other stochastic model en
dc.subject.other Rickettsia sp. PAR en
dc.subject.other hydrological modelling en
dc.subject.other rainfall/runoff model en
dc.subject.other stochastic simulation en
dc.title Simple disaggregation by accurate adjusting procedures en
heal.type journalArticle en
heal.identifier.primary 10.1029/96WR00488 en
heal.identifier.secondary http://dx.doi.org/10.1029/96WR00488 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract A multivariate disaggregation method is developed for stochastic simulation of hydrologic series. The method is based on three simple ideas that have been proven effective. First, it starts using directly a typical PAR(l) model and keeps its formalism and parameter set, which is the most parsimonious among linear stochastic models. This model is run for the lower- level variables without any reference to the known higher-level variables. Second, it uses accurate adjusting procedures to allocate the error in the additive property, i.e., the departure of the sum of lower-level variables within a period from the corresponding higher-level variable. They are accurate in the sense that they preserve explicitly certain statistics or even the complete distribution of lower-level variables. Three such procedures have been developed and studied in this paper, both theoretically and empirically. Third, it uses repetitive sampling in order to improve the approximations of statistics that are not explicitly preserved by the adjusting procedures. The model, owing to the wide range of probability distributions it can handle (from bell-shaped to J-shaped) and to its multivariate framework, is useful for a plethora of hydrologic applications such as disaggregation of annual rainfall or runoff into monthly or weekly amounts, and disaggregation of event rainfall depths into partial amounts of hourly or even less duration. Such real-world hydrologic applications have been explored in this study to test the model performance, which has proven very satisfactory. en
heal.publisher AMER GEOPHYSICAL UNION en
heal.journalName Water Resources Research en
dc.identifier.doi 10.1029/96WR00488 en
dc.identifier.isi ISI:A1996UV61300019 en
dc.identifier.volume 32 en
dc.identifier.issue 7 en
dc.identifier.spage 2105 en
dc.identifier.epage 2117 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής