dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:12:17Z |
|
dc.date.available |
2014-03-01T01:12:17Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0167-7152 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12050 |
|
dc.subject |
Excess: Construction |
en |
dc.subject |
Hadamard matrix |
en |
dc.subject |
Linear models |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
HADAMARD-MATRICES |
en |
dc.subject.other |
EXCESS |
en |
dc.title |
Some results for almost D-optimal experimental designs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-7152(95)00223-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-7152(95)00223-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The problem of constructing first-order saturated designs that are optimal in some sense has received a great deal of attention in the literature. In experimental situations where n two-level factors are involved and it observations are taken, then the D-optimal first-order saturated design is an ii x ii +/-1 matrix with the maximum determinant In this paper almost D-optimal first-order saturated designs of order n = 1 mod4 are constructed using Hadamard matrices with maximum excess. The D-efficiency of these designs is studied and some numerical examples are given. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Statistics and Probability Letters |
en |
dc.identifier.doi |
10.1016/0167-7152(95)00223-5 |
en |
dc.identifier.isi |
ISI:A1996VM62500006 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
221 |
en |
dc.identifier.epage |
226 |
en |