dc.contributor.author |
Siettos, CI |
en |
dc.contributor.author |
Papadopoulos, DT |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.contributor.author |
Chronopoulos, AT |
en |
dc.date.accessioned |
2014-03-01T01:12:17Z |
|
dc.date.available |
2014-03-01T01:12:17Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0965-9978 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12052 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030270454&partnerID=40&md5=5a493182bdf2a30b3e8e905c1313391d |
en |
dc.subject |
Arnoldi |
en |
dc.subject |
Eigenproblems |
en |
dc.subject |
Lanczos |
en |
dc.subject |
Stability |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Ferromagnetic materials |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Galerkins method |
en |
dc.subject.other |
Linearized eigenproblem |
en |
dc.subject.other |
Magnetohydrostatic equilibrium |
en |
dc.subject.other |
Newton iteration |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Computation theory |
en |
dc.title |
Stability analysis of magnetohydrostatic equilibrium by the finite element method and Arnoldi and Lanczos eigensolvers |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The methods of Arnoldi and Lanczos are used for solving large and sparse eigenvalue problems. Such problems arise in the computation of stability of solutions of parameter-dependent, nonlinear partial differential equations discretized by the Galerkin/finite element method. Results are presented for the stability of equilibrium solutions of axisymmetric ferromagnetic liquid interfaces in external magnetic field of varying strength. Copyright (C) 1996 Civil-Comp Limited and Elsevier Science Limited |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Advances in Engineering Software |
en |
dc.identifier.isi |
ISI:A1996VH72400016 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
145 |
en |
dc.identifier.epage |
153 |
en |