dc.contributor.author |
Bazzani, A |
en |
dc.contributor.author |
Servizi, G |
en |
dc.contributor.author |
Turchetti, G |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.contributor.author |
Polymilis, C |
en |
dc.date.accessioned |
2014-03-01T01:12:17Z |
|
dc.date.available |
2014-03-01T01:12:17Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0369-3554 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12053 |
|
dc.subject |
Diffusion Process |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.title |
Stability boundary and diffusion in 2D maps describing a magnetic lattice |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02742510 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02742510 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
We consider the non-linear map describing the basic cell of a circular accelerator. The dependence of the stability basin on the non-linearity is investigated by considering increasing multipolar orders. A model for the diffusion induced by a periodic ripple is derived; for a quadratic non-linearity it is the Hénon map with a modulated linear frequency. For slow modulation the diffusion process is conveniently described by the adiabatic theory, which gives a diffusion time proportional to the cube of the modulation period. Unlike the case of noise modulation, the diffusion takes place in the bounded region, near a resonance, swept by the separatrices. |
en |
heal.publisher |
EDITRICE COMPOSITORI BOLOGNA |
en |
heal.journalName |
Nuovo Cimento della Societa Italiana di Fisica B |
en |
dc.identifier.doi |
10.1007/BF02742510 |
en |
dc.identifier.isi |
ISI:A1996VX33000005 |
en |
dc.identifier.volume |
111 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1369 |
en |
dc.identifier.epage |
1384 |
en |