dc.contributor.author |
Sophianopoulos, DS |
en |
dc.date.accessioned |
2014-03-01T01:12:18Z |
|
dc.date.available |
2014-03-01T01:12:18Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
1225-4568 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12055 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030245843&partnerID=40&md5=3f8240db8cfa3f8102e257f4b6e58b0f |
en |
dc.subject |
Critical points |
en |
dc.subject |
Dynamic buckling |
en |
dc.subject |
Saddle |
en |
dc.subject |
Snapping |
en |
dc.subject |
Stable in the large |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
Autonomous system |
en |
dc.subject.other |
Critical points |
en |
dc.subject.other |
Energy criteria |
en |
dc.subject.other |
Saddle |
en |
dc.subject.other |
Snapping |
en |
dc.subject.other |
Buckling |
en |
dc.title |
Static and dynamic stability of a single-degree-of-freedom autonomous system with distinct critical points |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The dynamic buckling mechanism of a single-degree-of-freedom dissipative/nondissipative gradient system is thoroughly studied, employing energy criteria. The model is chosen in such a manner, that its corresponding static response is associated with all types of distinct critical points. Under a suddenly applied load of infinite duration, it is found that dynamic buckling, occurring always through a saddle, leads to an escaped motion, which is finally attracted by remote stable equilibrium positions, belonging sometimes also to complementary paths. Moreover, although the existence of initial imperfection changes the static behaviour of the system from limit point instability to bifurcation, it is established that the proposed model is dynamically stable in the large, regardless of the values of all other parameters involved. |
en |
heal.publisher |
TECHNO-PRESS |
en |
heal.journalName |
Structural Engineering and Mechanics |
en |
dc.identifier.isi |
ISI:A1996VL47700005 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
529 |
en |
dc.identifier.epage |
540 |
en |